(3.238.174.50) 您好!臺灣時間:2021/04/16 16:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蕭凱中
研究生(外文):Kai-Chung Hsaio
論文名稱:基於沉浸理論的多準則決策模式評估數位遊戲學習
論文名稱(外文):Evaluating Digital game-based learning system by using MCDM model based on Flow theory
指導教授:鄭景俗鄭景俗引用關係
指導教授(外文):Ching-Hsue Cheng
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:資訊管理系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:55
中文關鍵詞:沉浸理論評估方法數位遊戲學習德爾菲法多準則決策
外文關鍵詞:evaluation modelgame-based learningflow theoryMCDMDelphi method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於數位遊戲引發人們主動参與的特性,應用於教育上已日益增多,並且成為了一種新的教育方式-遊戲式教學,遊戲式教學的成效必須依賴於教育遊戲的品質,然而並沒有方法去評估或挑選具有品質的教育遊戲。本論文基於沉浸理論並試圖建立一個評估模式,並且結合多準則決策方法將教育遊戲排序,藉以提供教育者在課程實施前先評選最適合且有品質的教育遊戲。此外本論文基於過去相關文獻設計沉浸構面問卷,並以德爾菲法請專家審視沉浸狀態的構面,提出建議並達到共識來重新建構適合用於評估遊戲環境之模型,然後以提出的情境OWA為基的TOPSIS多準策決策方法去開發評估教育遊戲之系統,名為eMLG。在個案驗證中,我們以開發的系統請專家進行評估三種不同類型的教育遊戲,並且實施系統滿意度調查,其結果證實使用本系統評估遊戲是快速且具有便利性,並且能有效的在根據情境推薦最佳並具有品質的教育遊戲給教育者。
The game-based learning as a well-known learning method used to teach students in education which learning effect depends on the quality of educational games. In the past the educators are difficult to determine whether the game is quality. Because of game environment is too complex and evaluation methods is difficult to implement. And also there is no method to help educator chosen the appropriate educational games for course. This research proposes a novel model to evaluate educational game based on flow theory and combined the MCDM method to rank educational game for assisting educator selects the best educational game with quality before curriculum implementation. In addition, this study designs the questionnaire of dimensions of flow based on previous related literature. And re-examine the dimension of flow by Delphi method which ask expert to build a new evaluation model for evaluating educational game. And this study developed a game evaluation system named eMLG based on TOPSIS method with situational OWA weighting. In case verification, several experts use the developed system to evaluate three educational games with different type of knowledge and style, and ask experts to fill questionnaire of system satisfaction after evaluation process. The results show that uses this system to evaluate game is more fast and convenient and can effectively recommended best education game with quality for educators in different situations.
摘要 i
ABSTRACT ii
Contents iii
List of Tables v
List of Figures vi
1. Introduction 1
1.1 Background and motivation 1
1.2 Research objectives 3
1.3 Research limitations 3
1.4 Organization of this thesis 4
2. Related literature 5
2.1 Digital game-based learning 5
2.2 Flow theory 6
2.3 Multiple Criteria Decision Making 8
2.3.1 TOPSIS 9
2.4 OWA 11
2.5 Delphi method 13
3. Proposed model and System development 15
3.1 Research concept 15
3.2 Building DGBL evaluation model 16
3.2.1 Selected variable of flow 17
3.2.2 Screening variables by Delphi method 23
3.2.3 Experts selected 23
3.2.4 Delphi method 23
3.2.5 Determine dimensions of flow 24
3.3 Proposed evaluation algorithm 25
3.3.1 System development 28
4. Case verification 30
4.1 Game description 30
4.2 Participants and evaluation process 33
4.3 System satisfaction questionnaire 33
4.4 Result and finding 34
4.5 Finding 1: Flow ingredient 37
4.6 Finding 2: Conservative situation 38
4.7 Finding 3: Preference ordering 38
4.8 Finding 4: System satisfaction 40
5. Conclusion 41
Reference 43
Adler, M. (1996). Gazing into the oracle: the Delphi method and its application to social policy and public health. Jessica Kingsley Publishers.
Agarwal, R., &; Karahanna, E. (2000). Time flies when you’re having fun: Cognitive absorption and beliefs about information technology usage. MIS Quarterly, 24 (4), 665-694.
Anderson, D. R., Sweeney, D. J., &; Williams, T. A. (1998). Quantitative methods for business (7th ed.). OH: International Thomson Publishing.
Butler, D. L., &; Winne, P. H. (1995). Feedback and self-regulated learning: A theoretical synthesis. Review of educational research, 65(3), 245-281.
Behzadian, M., Otaghsara, S. K., Yazdani, M., &; Ignatius, J. (2012). A state-of the-art Survey of TOPSIS Applications. Expert Systems with Applications, 39(17), 13051-13069.
Clayton, M. J. (1997). Delphi: A technique to harness expert opinion for critical decision-making tasks in education. Educational Psychology, 17(4), 373-386.
Csikszentmihalyi, M. (1975). Beyond boredom and anxiety. San Francisco: Jossey-Bass.
Chang, J. R., Ho, T. H., Cheng, C. H., &; Chen, A. P. (2006). Dynamic fuzzy OWA model for group multiple criteria decision making. Soft Computing, 10(7), 543-554.
Csikszentmihalyi, M., &; Kleiber, D. A. (1991). Leisure and self- actualization, In B. L. Driver, P. J. Brown &; G. L. Peterson (Eds.), Benefits of leisure (pp.91-02). State College, PA: Venture.
Chen, H., Wigand, T. R., &; Nilan, M. (1999). Optimal experience of web activities. Computers in Human Behavior, 15(5), 585-608.
Choi, D. H., Kim, J., &; Kim, S. H. (2007). ERP training with a web-based electronic learning system: The flow theory perspective. International Journal of Human-Computer Studies, 65(3), 223-243.
Cheng, C. H., &; Lin, Y. (2002). Evaluating the best main battle tank using fuzzy decision theory with linguistic criteria evaluation. European Journal of Operational Research, 142, 174-186.
Dickey, M. D. (2005). Engaging by design: How engagement strategies in popular computer and video games can inform instructional design. Educational Technology Research and Development, 53(2), 67–83.
Dondi, C., &; Moretti, M. (2007). A methodological proposal for learning games selection and quality assessment. British Journal of Educational Technology, 38(3), 502–512.
Eow, Y. L., Ali W. Z. W., Mahmud, R., &; Baki, R. (2009). Form one students’ engagement with computer games and its effect on their academic achievement in a Malaysian secondary school. Computers &; Education, 53(4), 1082-1091. Doi: 10.1016/j.compedu.2009.05.013.

Finneran, C. M., &; Zhang, P. (2003). A person-artefact-task (PAT) model of flow antecedents in computer-mediated environments. International Journal of Human-Computer Studies, 59(4), 475-496.
Fuller, R., &; Majlender, P. (2001). An analytic approach for obtaining maximal entropy OWA operator weights. Fuzzy Sets and Systems, 124(1), 53-57.
Fish, L. S., &; Busby, D. M. (1996). The Delphi method. In D. H. Prenkl &; S. M. Moon (Eds.), Research methods in family therapy (pp. 469–482). NY: Guilford Press.
Fu, F. L., Su, R. C., &; Yu, S. C. (2009). EGameFlow: A scale to measure learners’ enjoyment of e-learning games. Computers &; Education, 52(1), 101-112.
Goodman, C. (1987). The Delphi technique: A critique. Journal of Advanced Nursing, 12, 729-734.
Garcia-Cascales, M. S., &; Lamata, M. T. (2012). On rank reversal and TOPSIS method. Mathematical and Computer Modelling, 56(5), 123-132.
Hogle, J. G. (1996). Considering games as cognitive tools: In search of effective "Edutainment". Retreived November 15, 2011, from http://twinpinefarm.com/pdfs/games.pdf.
Huang, M. H. (2003). Designing website attributes to induce experiential encounters. Computers in Human Behavior, 19 (4), 425-442.
Hsu, C. L., &; Lu, H. P. (2003).Why do people play on-line games? An extended TAM with social influences and flow experience. Information &; Management, 41(7), 853-868.
Hoffman, D. L., &; Novak, T. P. (1996). Marketing in hypermedia computer-mediated environments: conceptual foundations. The Journal of Marketing, 50-68.
Hoffman, D. L., &; Novak, T. P. (2000). The growing digital divide: Implications for an open research agenda. Understanding the Digital Economy. MIT Press, Cambridge, MA.
Hoffman, D. L., &; Novak, T. P. (2009). Flow online: lessons learned and future prospects. Journal of Interactive Marketing, 23(1), 23-34.
Hwang, C. L. &; Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Applications. New York: Springer-Verlag.
Hsieh, L. F., Chin, J. B., &; Wu, M. C. (2006). Performance evaluation for university electronic libraries in Taiwan. The Electronic Library, 24(2), 212-224.
Li, S. (2005). A Web-enabled hybrid approach to strategic marketing planning: Group Delphi + a Web-based expert system. Expert Systems with Applications, 29, 393-400.
Linstone, H. A., &; Turoff, M. (Eds.). (1975). The Delphi method: Techniques and applications (pp. 37-71). Boston, MA: Addison-Wesley Publishing Company, Advanced Book Program.
Johnson, L., Smith, R., Willis, H., Levine, A., &; Haywood, K. (2011). The 2011 Horizon Report. Austin, Texas: The New Media Consortium.
Kiili, K., de Freitas, S., Arnab, S., &; Lainema, T. (2012). The Design Principles for Flow Experience in Educational Games. Procedia Computer Science, 15, 78-91.
Kebritchi, M., Hirumi, A., &; Bai, H. (2010). The effects of modern mathematics computer games on mathematics achievement and class motivation. Computers &; Education, 55(2), 427-443.
Murry Jr, J. W., &; Hammons, J. O. (1995). Delphi: A Versatile Methodology for Conducting Qualitative Research. Review of Higher Education, 18(4), 423-36.
McFarlane, A., Sparrowhawk, A. &; Heald, Y. (2002). Report on the educational use of games: An exploration by TEEM of the contribution which games can make to the education process. (On line). Available: http://reservoir.cent.uji.es/canals/octeto/es/440.
Novak, T. P., Hoffman, D. L., &; Yung, Y. F. (2000). Measuring the customer experience in online environments a structural modeling approach. Marketing Science, 19(1), 22-42.
Oblinger, D. G. (2004). The next generation of educational engagement. Journal of Interactive Media in Education, 2004(8), 1-18.
O''Hagan, D. T., Palin, K. J., &; Davis, S. S. (1988). Intestinal absorption of proteins and macromolecules and the immunological response. Critical reviews in therapeutic drug carrier systems, 4(3), 197.
Prensky, M. (2001). Digital game-based learning. New York: McGraw-Hill.
Provenzo, E.F. (1991). Video Kids: Making Sense of Nintendo. Cambridge, MA: Harvard University Press
Reid, N. (1988). The Delphi technique: its contribution to the evaluation of professional practice. In R. Ellis (Ed.), Professional competence and quality assurance the caring professions (pp. 230–262). New York: Chapman &; Hall.
Shafcfer, D, W. (2006). Epicstemic frames for epistemic games. Computers &; Education, vol.46 (3), 223-234.
Saaty, T. L. (1980). The analytic hierarchy process: McGraw-Hill, New York.
Skadberg, Y. X., &; Kimmel, J. R. (2004). Visitors’ flow experience while browsing a Web site: its measurement, contributing factors and consequences. Computers in Human Behavior, 20, 403-422.
Salen, K., &; Zimmerman, E. (2004). Rules of Play (ROP): Game Design Fundamentals. Cambridge: MIT Press.
Sweetser, P., &; Wyeth, P. (2005). GameFlow: A model for evaluating player enjoyment in games. ACM Computer in Entertainment, 3(3), 1-24.
Tiger, L. (2000). The pursuit of pleasure. Boston: Little, Brown and Company. pp. 52-60.
Turban, E., &; Aronson, J. (2001). Decision support systems and intelligent systems (6th ed.). Upper Saddle River, NJ: Prentice-Hall.
Webler, T., Levine, D., Rakel, H., &; Renn, O. (1991). A novel approach to reducing uncertainty: the group Delphi. Technological forecasting and social change, 39(3), 253-263.
Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multicriteria decisionmaking. Systems, Man and Cybernetics, IEEE Transactions on, 18(1), 183-190.
Yager, R. R. (2004). On the retranslation process in Zadeh''s paradigm of computing with words. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 34(2), 1184-1195.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔