(100.26.179.251) 您好!臺灣時間:2021/04/15 17:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳鈺芳
研究生(外文):Yu-fang Chen
論文名稱:履帶型搜索機器人之開發
論文名稱(外文):Development of tracked-type searching robot
指導教授:蘇國嵐
指導教授(外文):Kuo-lan Su
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:106
中文關鍵詞:RF無線通訊履帶型搜索機器人AT89S52單晶片
外文關鍵詞:wireless RF interfaceAT89S52 chiptrack-type search robot
相關次數:
  • 被引用被引用:0
  • 點閱點閱:238
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要在探討履帶型搜索機器人,搭配無線攝影機路徑規劃,將所偵測到的影像傳輸至PC,以便辨識前方障礙物。
履帶型搜索機器人,主要架構是以微控制器AT89S52為控制核心,並具有影像傳輸系統與紅外線發射功能,將履帶型搜索機器人影像偵測到的障礙物透過無線方式傳送至履帶型搜索機器人主控端(PC)上作顯示,透過此影像操作者可方便辨識前方是否有無障礙物,透過操控可達到迅速且安全的避開障礙物。
機器人速度與行進方向的控制主要是利用馬達驅動器技術來控制,避障功能則是以紅外線避障模組來實現。另外主控端以Borland C++ Builder 所撰寫之控制介面來實現手動控制機器人之運動狀態,再由RS-232傳輸方式傳送給履帶型搜索機器人之控制器。履帶型搜索機器人可以在未知環境下,運用無線攝影機,回傳的影像,規劃出安全之路徑,並閃避由履帶型搜索機器人所偵測出之避障物。
The main purpose of this thesis is to design a track-type searching mobile robot equipped with a wireless CCD, transmits detection signals to the PC via wireless RF interface, the controller of the track-type searching robot is the microcontroller chip AT89S52. The image system of the track-type robot transmits the read-time image signal to the supervised computer, and orders the command the mobile robot to avoid the obstacle. The mobile robot uses in the entertainment IR light to attack the enemy, and applied.
The speed and direction of the mobile robot is driven by two DC motors the obstacle avoidance function is achieved using the infrared modules for the robot. Moreover, the user interface realizing of the robot is developed control of the state of motion with Borland C++ Builder. The command signals are sent to the track-type search robot by the supervised computer through RS-232 interface. As a result, in an unknown environment, the mobile robot can plan a safe path and avoid the obstacle via the use of wireless cameras and transmission technology.
中文摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機與目的 8
1.4 論文架構 11
第二章 系統架構 12
2.1 硬體架構設計 12
2.2 電腦監控介面架構 16
2.3 通訊系統架構 17
2.3.1 監控電腦端無線傳輸系統 18
2.3.2 機器人端資料傳輸方式 20
2.4 無線電遙控器控制版 22
2.4.1 STC12C5A60S2單晶片 23
2.5 無線影像系統架構 25
2.6 紅外線發射裝置 26
第三章 履帶型搜索機器人平台 27
3.1 履帶型搜索機器人整體架構 27
3.2 履帶型搜索機器人 27
3.2.1 MCU AT89S52 28
3.2.2 RF無線模組 30
3.2.3 馬達驅動IC 40
3.2.4 電源模組 46
3.2.5 感光模組 46
3.2.6 避障模組 47
3.2.7 語音模組 49
第四章 資料通訊與軟體應用 63
4.1 履帶型搜索機器人與控制端通訊方式 63
4.1.1 PC與履帶型搜索機器人的通訊協定 63
4.1.2 PC端的監控介面 66
4.2 SPI串列傳輸介紹 67
4.3 軟體編譯 Keil C51 68
4.4 燒錄程式 Sigma 71
第五章 實驗結果 73
5.1 履帶型搜索機器人系統與監控介面 73
5.1.1 實驗目的 73
5.1.2 實驗條件 73
5.1.3 實驗過程 73
5.1.4 無線驅動控制 73
5.1.5 監控介面與履帶行搜索機器人之通訊 79
5.1.6 履帶型搜索機器人之爬坡測試 84
5.1.7 履帶型搜索機器人之實驗環境 87
5.1.8 履帶型搜索機器人之紅外線發射器測試 89
第六章 結論與未來展望 90
參考文獻 91
自傳 95
[1]Rocky 7 Rover http://mars.jpl.nasa.gov/mer
[2]愛寶機器人 AIBO http://www.aibo-europe.com
[3]HONDA的ASIMO人形機器人 http://world.honda.com/HDTV/ASIMO/
[4]http://www.icbl.org/lm/
[5]http://chinarobot.blogchina.com/blog/category.83706.html
[6]“Landmine detection research pushes forward, despite challenges”, Proceedings of the IEEE International Conference on Intelligent Systems, vol. 17, pp. 4-7, 2002.
[7]http://bbs.moninet.com.tw/board/topic.cgi?forum=11&;topic=8375&;show=150
[8]L. Marques, M. Rachkov, and A. T. Almeida, “Mobile pneumatic robot for demining”, Proceedings of the IEEE International Conference on Robotics and Automation, vol. 4, pp. 3508-3513, 2002.
[9]J. D. Nicoud and M. K. Habib “The Pemex-B autonomous demining robot: Perception and navigation strategies”, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 419-424, 1995.
[10]J. D. Nicoud and P. Machler “Robots for anti-personnel mine search”, Control Eng. Practice, vol. 4, pp. 493-498, 1996.
[11]Y. Tojo, P. Debenest, E. F. Fukushima and S. Hirose “Robotic system for humanitarian demining”, Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2, pp. 2025-2030, 2004.
[12]K. Kato and S. Hirose “Proposition and basic experiments of shape feedback master-slave arm-on the 1application for the demining robots”, Proceedings of the IEEE International Conference on Robotics and Automation, vol. 3, pp. 2334-2339, 2000.
[13]K. Kato and S. Hirose, “Proposition of the humanitarian demining system by the quadruped walking robot-adaptability for various tasks using the foot-end-effecter changing mechanism”, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 769-774, 2000.
[14]K. Kato and S. Hirose “Development of the Quadruped Walking Robot, "TITAN-IX" ”, Proceedings of the IECON, vol. 1, pp. 40-45, 2000.
[15]S. Suganuma, M. Ogata, K. Takita and S. Hirose “Development of detachable tele-operation Gripper for the walking robot”, Proceedings of the IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, vol. 3, pp. 3390-3395, 2003.
[16]K. Arikawa and S. Hirose “Development of quadruped walking robot TITAN-VIII”, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 208-214, 1996.
[17]L. Marques, M. Rachkov, and A. T. Almeida, “Mobile pneumatic robot for demining”, Proceedings of the IEEE International Conference on Robotics and Automation, vol. 4, pp. 3508-3513, 2002.
[18]S. X. Yang, C. Luo, and Q. H. M. Meng, “Area-covering operation of a cleaning robot in a dynamic environment with unforeseen obstacles”, Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, vol. 2, pp. 1034-1039, 2003.
[19]Y. Zhang, M. Schervish, E. U. Acar and H. Choset, “Probabilistic methods for robotic landmine search”, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 769-774, 2001.
[20]S. C. Wong and B. A. Macdonald, “A topological coverage algorithm for mobile robots”, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems vol. 2, pp. 1685-1690, 2003.
[21]R. Cassinis, G. Bianco, A. Cavagnini, and P. Ransenigo, “Strategies for navigation of robot swarms to be used in landmines detection”, Proceedings of the Third European Workshop on Advanced Mobile Robots, pp.211-218, 1999.
[22]G.. M. Univ, “Geo-location of detected landmines via mobile robots equipped with multiple sensors” , Proceedings of the IECON, vol. 3, pp. 1972-1977, 2002.
[23]Y. J. Lee and S. Hirose, “Three-legged walking for fault tolerant locomotion of a quadruped robot with demining mission”, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp. 973-978, 2000.
[24]V. Kumar and F. Sahin “Cognitive maps in swarm robots for the mine detection application”, Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 3364-3369, 2003.
[25]E. Chapman and F. Sahin “Application of swarm intelligence to the mine detection problem”, Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, vol. 6, pp. 5429- 5434, 2004.
[26]Y. Tojo, P. Debenest, E.F. Fukushima and S. Hirose “Robotic system for humanitarian demining”, Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2, pp. 2025 - 2030, 2004.
[27]K. Nonami and Y. Ikedo “Walking control of COMET-III using discrete time preview sliding mode controller”, Proceedings of the IEEE International Conference on Intelligent Robots and Systems, vol. 4, pp. 3219 - 3225, 2004.
[28]P. Santana, J. Barata, H. Cruz, A. Mestre, J. Lisboa and L. Flores “A multi-robot system for landmine detection”, Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation, vol. 1, pp. 721-728 , 2005.
[29]S. Larionova, L. Marques, and A.T. de Almeida “Features selection for sensor fusion in a demining robot”, Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3175-3180, 2005.
[30]J. Coronado-Vergara, G. Avina-Cervantes, M. Devy and C. Parra “Towards landmine detection using artificial vision”, Proceedings of the IEEE International Conference on Intelligent Robots and Systems, pp. 659-664, 2005.
[31]行政院經濟建設委員會(2010),國土空間發展策略計畫,台灣經濟論衡,8(3),20
[32]范逸之、江文賢、陳立元編著, ”C++ Builder與RS-232串列通訊控制”,文魁資訊股份有限公司, 2002年
[33]Prolific Semiconductor, “PL-2303X Edition USB to Serial Bridge Controller Product Data Sheet ”, http://www.prolific.com.tw。
[34]101年智慧型機器人產品創意競賽產業應用-服務型機器人組 創意構想書
[35]http://www.greenleaf.com.tw/
[36]ATMEL Semiconductor, “AT89C2051 8-bit Microcontroller with 2K Bytes Flash Datasheet ”, http://www.atmel.com/。
[37]NORDIC Semiconductor, ”Single chip 433/868/915 MHz Transceiver nRF905 Data Sheet”, http://www.nordicsemi.no/。
[38]TOSHIBA Semiconductor, ”TA7291P Toshiba bipolar linear integrated circuit silicon monolithic Data Sheet”,http://www.semicon.toshiba.co.jp/。
[39]TA8429H full bridge driver IC datasheet.
[40]Sounding Technology Inc, ”中文文字轉語音IC SD178A Data Sheet” , http://www.sounding.com.tw。
[41]范逸之、江文賢、陳立元編著, ”C++ Builder與RS-232串列通訊控制”,文魁資訊股份有限公司, 2002年
[42]余明興、吳明哲、黃世陽、黃豐隆, ”Borland C++ Builder 5 學習範本”,松崗電腦圖書資料股份有限公司,2000年。
[43]李鴻鵬老師編寫 ,”Keil C51 μVision4的使用”, 和春技術學院 資工系
[44]蘇國嵐、羅仁權、蕭智煒、巫信輝, ”機器人原理與實務寶典”,宏友圖書開發股
[45]Espenschied, K.S., Quinn, R.D., Beer, R.D., and Chiel, H.J., “Biologically based distributed control and local reflexes improve rough terrain locomotion in a hexapod robot”, Robotics and Autonomous Systems, pp. 59-64, 1996。
[46]Raibert, M. H., “Introduction: Legged Locomotion,” the International Journal ofRobotics Research, pp. 2-3, 1984。
電子全文 電子全文(網際網路公開日期:20241231)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔