跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/03/20 15:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳彥龍
研究生(外文):Yen-Lung Chen
論文名稱:無人飛行載具之強健導引律設計
論文名稱(外文):Robust Guidance Law Design for UAVs
指導教授:陳永裕陳永裕引用關係蘇國嵐
指導教授(外文):Yung-Yu ChenKuo-Lan Su
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:48
中文關鍵詞:強健導引律回授線性化無人飛行載具
外文關鍵詞:UAVtrajectory trackingrobust control designfeedback linearization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:281
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來無人飛行載具在民生與軍事用途上的應用與研究越來越普遍,其特點是:要執行具高風險的任務,可以減少人員的損傷。然而高風險的任務通常存在著極端的環境限制,因此,如何精準地控制無人飛行載具達到任務需求是本篇論文的研究重點。本篇論文針對無人飛行載具提出了一個具有強健性的導引律設計方法,在這過程中,我們引用了無人飛行載具的點質量數學模型來表現飛機在三維空間中的動態飛行行為,與一風擾模型來模擬大自然中風在連續時間內對無人飛行載具的擾動行為。藉由此安排,我們可以建構出無人飛行載具在真實世界中的性能表現。接著我們使用了回授線性化方法,將原本的非線性系統藉由適當的座標變換轉成線性控制模式,但誤差系統中存在著不確定的干擾項,故加入一個強健控制器來確保穩定度與誤差收斂性。實驗結果顯示,本文提出的強健導引律能有效抵抗外來環境的干擾,且無人飛行載具在三維空間中能有精準的飛行性能。
This paper presents an advanced guidance law which is based on robust feedback linearization (RFL) concepts and design procedures for autonomous pursuit of predefined waypoints for unmanned aerial vehicles (UAVs) in the three-dimensional (3D) area. In this investigation, a nonlinear 3D model of UAV considered wind gust disturbances is used for realizing realistic flight maneuvers. In this investigation, the overall error dynamics between the guided UAV and tracked waypoints can be proven as being stability in absence of external disturbances, and all effects of the external disturbances, such as wind gust will be proven to be attenuated below a certain of attenuation level if they are taken into consideration. Besides, a viewable lab-based simulator is developed for the above guided UAV is built up by MATLAB software; it’s capable of simulating both homogeneous and heterogeneous characteristics of the engaging air vehicles. Finally, tracking performances between the proposed robust guidance law and the feedback linearization based guidance law are demonstrated the by comparison results.
中文摘要 I
ABSTRACT II
ACKNOWLEDGMENTS III
CONTENTS IV
LIST OF TABLES V
LIST OF FIGURES VI
NOMENCLATURES VIII
CHAPTER 1 INTRODUCTION 1
1.1 Motivations 1
1.2 Review and Objective 1
1.3 Outline 3
CHAPTER 2 EQUATION OF MOTION OF UAVs 4
2.1 3-DOF Model of UAVs 4
2.2 Wind Disturbance Model 6
CHAPTER 3 ROBUST GUIDANCE LAW DESIGN 8
3.1 Feedback Linearization Guidance Law 12
3.2 Robust Compensator for Eliminating the Effects of External Disturbances 14
CHAPTER 4 SIMULATION RESULTS AND DISCUSSIONS 19
4.1 Evaluation Configuration 19
4.2 Case 1: Two Waypoints Straightforward Simulation 22
4.3 Case 2: A Closed-Loop Trajectory with Nine Waypoints 28
4.4 Case 3: Long Term Course with Nineteen Waypoints 35
4.5 Virtual Reality Demonstrations of UAVs Flight 41
CHAPTER 5 CONCLUSIONS 45
REFERENCES 46
[1]Samad, T., Bay, J.S., and Godbole, D., “Network-Centric Systems for Military Operations in Urban Terrain: The Role of UAVs,” Proc. IEEE, Vol. 95, No. 1, Jan. 2007, pp. 92-107.
[2]Sparrow, R., “Predators or Plowshares? Arms Control of Robotic Weapons,” Technology and Society Magazine, IEEE, Vol. 28, Issue 1, 2009, pp. 25-29.
[3]Schneiderman, R., “Unmanned Drones Are Flying High in the Military/Aerospace Sector,” Signal Processing Magazine, IEEE, Vol. 29, Issue 1, 2012, pp. 8-11.
[4]Chen, Y. Y., Wu, C. S., Chen, Y. L. and Su, K. U., “Advanced Control Design for UAV,” Journal of Research and Surveys , Vol.6, Jul.2012, pp. 1435-1439.
[5]Lin, C. L., and Chen, Y. Y., “Design of Fuzzy Logic Guidance Law Against High-Speed Target,” Journal of Guidance, Control, and Dynamics, Vol. 23, No. 1, 2000, pp. 17-25.
[6]Imado, F., and Uehara, S., “High-g Barrel Roll Maneuvers Against Proportional Navigation From Optimal Control Viewpoint,” Journal of Guidance, Control, and Dynamics, Vol. 21, No. 6, Nov.–Dec. 1998, pp. 876-881.
[7]Kinoshita, T., and Imado, F., “The Application of an UAV Flight Simulator-The Development of a New Point Mass Model for an Aircraft,” SICE-ICASE International Joint Conference 2006, pp. 4378- 4383.
[8]Lee, S., and Bang, H., “Three-Dimensional Ascent Trajectory Optimization for Stratospheric Airship Platforms in the Jet Stream,”Journal of Guidance, Control, and Dynamics, Vol. 30, No. 5, 2007, pp. 1341-1352.
[9]Dai, R., and Cochran, E. H., Jr., “Three-Dimensional Trajectory Optimization in Constrained Airspace,” Journal of Aircraft, Vol. 46, No. 2, March–April 2009, pp. 627-634.
[10]Wickenheiser, A., and Garcia, E., “Optimization of Perching Maneuvers Through Vehicle Morphing,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 4, July-Aug. 2008, pp. 815-823.
[11]Vinh, N. X., “Flight Mechanics of High-Performance Aircraft”, Cambridge Univ. Press, Cambridge, England, U.K., 1993, pp. 8-25.
[12]Athans, M., Castanon, D., Dunn, K., Greene, C., Wing Lee, Sandell, N.Jr., and Willsky, A.S., “ The Stochastic Control of the F-8C Aircraft Using a Multiple Model Adaptive Control (MMAC) Methad-Part 1: Equillibrium Flight”, IEEE Trans. on Automatic Control Vol. 22, No.5, 1977, pp. 768-780.
[13]J. J., E. Slotine, and W. P., Lin, “Applied Nonlinear Control”, Prentice-Hall, Englewood Cliffs, NJ, 1991, pp. 216-228.
[14]S. R., Vadali, and H. S., Oh, “Space Station Attitude Control and Momentum Management: A Nonlinear Look,” J. Guid. Contr. Dyn., Vol. 15, No, 3, 1992, pp. 577-586.
[15]G., Ferreres, and M., M’Saad, “Parametric Robustness Evaluation of an Autopilot,” J. Guid. Contr. Dyn., Vol. 19, 1996, pp. 621-627.
[16]B., Burl, and D. L., Krueger, “Parametric Uncertainty Reduction in Robust Missile Autopilot Design,” J. Guid. Contr. Dyn., Vol. 19, 1996, pp. 733-736.
[17]M., Dalsmo, and O., Egeland, “State Space Feedback Control of A Rigid Spacecraft,” Proc. 34th Conf. Decis. Contr., New Orleans, LA, 1995.
[18]W., Kang, “Nonlinear Control and Its Applications to Rigid Spacecraft,” IEEE Trans. Automat. Contr., Vol. 40, 1995, pp. 1281-1285.
[19]A. Stoorvogel, “The Control Problem: A State Space Approach,” Prentice-Hall, New York, 1992.
[20]T. Basar, and P. Bernhard, “ Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach,” Berlin, 1991.
[21]T. Basar, and G. J. Olsder, “Dynamic Noncooperative Game Theory,” Academic Press, London, 1982.
[22]The Official Web Site of The U.S. Air Force, MQ-1B Predator: http://www.af.mil/AboutUs/FactSheets/Display/tabid/224/Article/104469/mq-1b-predator.aspx
[23]F.K., Yeh, “Attitude controller design of mini-unmanned aerial vehicles using fuzzy sliding-mode control degraded by white noise interference,” IET Control Theory, Vol. 6, Iss. 9, 2012, pp. 1205-1212.
[24]Hongda Chen, “UAV Path Planning with Tangent-plus-Lyapunov Vector Field Guidance and Obstacle Avoidance,” IEEE Trans. on Aerospace and Electronic Systems Vol. 49, No. 2, 2013, pp. 840-856.
[25]W. MacKunis, Z.D., Wilcox, M.K., Kaiser, and W.E., Dixon, “Global Adaptive Output Feedback Tracking Control of an Unmanned Aerial Vehicle,” IEEE Trans. on Control Systems Technology, Vol. 18, No. 6, 2010, pp. 1390-1397.
[26]U., Zengin, and A., Dogan, “Real-Time Target Tracking for Autonomous UAVs in Adversarial Environments: A Gradient Search Algorithm,” IEEE Transactions on Robotics, Vol. 23, No. 2, 2007, pp. 294-307.
[27]H., Ergezer, and K., Leblebicioglu, “Path Planning for UAVs for Maximum Information Collection,” IEEE Trans. on Aerospace and Electronic Systems Vol. 49, No. 1, 2013, pp. 502-520.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top