(3.236.6.6) 您好!臺灣時間:2021/04/23 21:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林威丞
研究生(外文):Wei-Cheng Lin
論文名稱:新型具電壓累加單元之交錯式直流-直流高升壓轉換器之分析與設計
論文名稱(外文):Analysis and Design of a Novel Interleaved High Step-Up DC-DC Converter with Cumulative Voltage Unit
指導教授:陳一通陳一通引用關係
指導教授(外文):Yie-Tone Chen
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:62
中文關鍵詞:交錯式升壓型轉換器高升壓型箝位電路電壓累加單元
外文關鍵詞:Clamp effectHigh step-upInterleaved step-up convertercumulative voltage unit
相關次數:
  • 被引用被引用:5
  • 點閱點閱:390
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文提出新型具電壓累加單元之交錯式高升壓轉換器,其適合用於高輸出電壓及低電流之應用。所提出之架構利用雙開關形成二次升壓路徑,配合交錯式控制,提出了一種新的電壓累加單元(Cumulative Voltage Unit)升壓技術,每組的電壓累加單元可有效率的共用二極體,不僅降低元件數量並能提升輸出電壓增益,且具有箝位效果,亦可降低開關與整流二極體之耐壓,搭配交錯式控制性質,可降低電流流經元件所造成的功率損失及輸入電流漣波,進而提高效率。而電壓累加單元亦能以不同的排列方式延伸其電路架構。
最後以模擬結果與實作電路,驗證本文所提出之新型具電壓累加單元之交錯式升壓轉換器的理論分析與設計方法之正確性,並證明本文所提出之架構具有其上述特性且能達成高效率之需求。
This thesis proposed a novel interleaved high step-up converter with cumulative voltage unit, which can be applied to high output voltage and low current. The circuit uses two switches to form two boost paths and cooperates with interleaved control to propose a novel Cumulative Voltage Unit. Because all cells can effectively share the common rectifier diodes, this novel circuit takes many advantages. First, the number of diodes can be reduced and the voltage gain ratio of this DC-DC converter can be lifted much more. Second, the clamper property can reduce the voltage stress of the switch and the rectifier diode. Furthermore, the interleaved control can lower the input current ripple and the losses in the circuit components to raise the power efficiency. Finally, the cumulative voltage units can also be employed to extend the circuit architecture based on different arrangements.
Simulations and experiment are provided to validate theoretical analysis and design method of the novel interleaved high step-up converter with cumulative voltage unit. The results can prove this circuit architecture obtains the mentioned advantages and meets the goal of high efficiency.
中文摘要 I
ABSTRACT II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1研究動機 1
1.2研究背景 1
1.2.1傳統升壓轉換器 1
1.2.2無變壓器之高升壓轉換器(Switched-Capacitor/Switched-Inductor Structures for Getting Transformerless Hybrid DC–DC PWM Converters) [14] 2
1.2.3典型非隔離的倍壓直流-直流轉換器(Voltage Multiplier Cells Applied to Non-Isolated DC–DC Converters)[15] 3
1.2.4具PFC及電壓倍增特性之交錯式升壓轉換器(Interleaved Boost Converter With Intrinsic Voltage-Doubler Characteristic for Universal-Line PFC Front End)[16] 4
1.2.5 電壓倍增器應用於兩直流-直流升壓轉換器之整合[15] 5
1.2.6 具高效率及電壓倍增器之交錯式高升壓型轉換器(Interleaved Converter With Voltage Multiplier Cell for High Step-Up and High-Efficiency Conversion)[17] 7
1.3研究目的 9
1.4論文架構 9
第二章 雙路徑之交錯式直流-直流高升壓轉換器 10
2.1簡介 10
2.2電路架構及參數定義 10
2.3雙路徑之交錯式直流-直流高升壓電路 11
2.3.1電路模式分析 11
第三章 新型具電壓累加單元之交錯式直流-直流高升壓轉換器 18
3.1簡介 18
3.2具電壓累加單元之交錯式高升壓轉換器 19
3.2.1電路模式分析 19
3.3電路延伸架構 26
第四章 元件設計與效率估算 30
4.1 前言 30
4.2 雙路徑之交錯式直流-直流高升壓轉換器規格 30
4.2.1 倍壓電容設計 30
4.2.2 二極體耐壓設計 31
4.2.3 開關耐壓設計 31
4.2.4 升壓電感設計 31
4.3功率估算 32
4.3.1 開關導通損失 32
4.3.2 電容損失 35
4.3.3 整流二極體導通損失 36
4.3.4 電感導通損失 36
4.3.5開關切換損失 36
4.3.6 總效率估算 37
4.4 新型具電壓累加單元之交錯式直流-直流高升壓轉換器規格 37
4.4.1 倍壓電容設計 38
4.4.2 二極體設計 38
4.4.3 開關耐壓設計 39
4.4.4 升壓電感選擇 39
4.5 電路功率估算 40
4.5.1 開關導通損失 40
4.5.2 電容損失: 43
4.5.3 整流二極體導通損失 43
4.5.4 電感導通損失:電感等校阻抗為 44
4.5.5開關切換損失 44
4.5.6 總效率估算 44
4.6 雙路徑之交錯式直流-直流高升壓轉換器之模擬與實作結果 45
4.6.1電路模擬波形 46
4.6.2實作電路波形 48
4.7 新型具電壓累加單元之交錯式直流-直流高升壓轉換器之 50
4.7.1電路模擬波形 51
4.7.2實作電路波形 53
4.8 效率量測 55
第五章 結論與未來建議 57
5.1 結論 57
5.2 未來建議 57
參考文獻 58
附錄 61
附錄一 實際電路之回授接線圖 61
附錄二 實作之參數設定 62
[1]L. Wang , T. C. Lin, “Dynamic Stability and Transient Responses of Multiple Grid-Connected PV Systems,” IEEE/PES, Transmission and Distribution Conference and Exposition, Apr. 2008.
[2]T. V. Moises, I. Barbi, “Nonisolated High Step-up Stacked DC-DC Converter Based on Boost Converter Elements for High Power Application,” IEEE International Symposium on Circuits and Systems (ISCAS), May. 2011.
[3]S. M. Chen, T. J. Liang, L. S. Yang, J. F. Chen, “A Safety Enhanced, High Step-Up DC–DC Converter for AC Photovoltaic Module Application,” IEEE Transactions on Power Electronics, vol. 27, no. 4, pp. 1809 - 1817, Apr. 2012.
[4]K. I. Hwu, Y. T. Yau, “A KY Boost Converter,” IEEE Transactions on Power Electronics, vol. 25, no. 11, pp. 2699-2703, Nov. 2010.
[5]L. S. Yang, T. J. Liang, J. F. Chen, “Transformerless DC–DC Converters With High Step-Up Voltage Gain,” IEEE Transactions on Industrial Electronics, vol. 56, no. 8, pp. 3144-3152, Aug. 2009.
[6]K. B. Park, G. W. Moon, M. J. Youn, “Nonisolated High Step-up Boost Converter Integrated With Sepic Converter,” IEEE Transactions on Power Electronics, vol. 25, no. 9, pp. 2266 - 2275, Sep. 2010.
[7]J. M. Kwon, B. H. Kwon, “High Step-Up Active-Clamp Converter With Input-Current Doubler and Output-Voltage Doubler for Fuel Cell Power Systems,” IEEE Transactions on Power Electronics, vol. 24, no. 1, pp. 108 - 115, Jan. 2009.
[8]S. K. Changchien, T. J. Liang, J. F. Chen, and L. S. Yang, “Novel high step-up DC-DC converter for fuel cell energy conversion system,” IEEE Transactions on Industrial Electronics, vol. 57, no. 6, pp. 2007–2017, Jun. 2010.
[9]M. Elshaer, A. Mohamed, O. Mohammed, “Smart Optimal Control of DC-DC Boost Converter in PV Systems,” IEEE/PES, Transmission and Distribution Conference and Exposition, 2010.
[10]M. M. Hussein, T. Senjyu, M. Orabi, M. A. A. Wahab, M. M. Hamada, “Control of a Variable Speed Stand Alone Wind Energy Supply System,” IEEE International Conference on Power and Energy, 2012
[11]C.E. Silva, R.P. Bascop&;eacute;, and D.S. Oliveira Jr. “Proposal of a new high step-up converter for UPS applications”. IEEE International Symposium on Industrial Electronics, vol. 2, pp, 2006,. 1288 – 1292.
[12]K. B. Park, G. W. Moon, M. J. Youn, “Nonisolated high step-up stacked converter based on boost-integrated isolated converter,” IEEE Transactions on Power Electronics, vol. 26, no. 2, pp. 577–587, Feb. 2011.
[13]M. H. Ohsato, K. Matsuse, “A Novel Circuit of a Single-Switch Electronic Ballast with a Boost-type Resonant Converter Applied to HID Lamps,” IEEE Transactions on Power Electronics, pp. 1466 - 1470, Dec. 2008.
[14]B. Axelrod, Y. Berkovich, A. Ioinovici, “Switched-Capacitor/Switched-Inductor Structures for Getting Transformerless Hybrid DC–DC PWM Converters,” IEEE Transactions on Circuits and Systems I, vol. 55, no. 2, pp. 687 - 696, Mar. 2008.
[15]M. Prudente, L. L. Pfitscher, G. Emmendoerfer, ; E. F. Romaneli, R. Gules, “Voltage multiplier cells applied to non-isolated DC-DC converters,” IEEE Trans. Power Electron, vol. 23, no. 2, pp. 871–887, Mar. 2008.
[16]Y. Jang, M. M. Javanovic, “Interleaved boost converter with intrinsic voltage-doubler characteristic for universal-line PFC front end,” IEEE Transactions on Power Electronics, vol. 22, no. 4, pp. 1394–1401, Jan. 2007.
[17]W. h. Li, Y. Zhao, Y. Deng, X. He, “Interleaved Converter With Voltage Multiplier Cell for High Step-Up and High-Efficiency Conversion,” IEEE Transactions on Power Electronics, vol. 25, no. 9, p. 2397 - 2408, Sep. 2010.
[18]吳財福, 陳耀銘, 陳裕愷, 吳永駿, 陳建志, 吳毓恩, 沈志隆, 李坤彥 共同編著,“電力電子學綜論”,全華科技圖書股份有限公司,2011。
[19]梁適安編著,“交換式電源供應器之理論與實務設計”,全華圖書股份有限公司,2008。
[20]王順忠譯,“電力電子學”,全華圖書股份有限公司,1988。
[21]徐新民,“新型具零電壓零電流切換之交錯式升壓型轉換器之分析與設計”,國立雲林科技大學電機工程系,碩士論文,2009。
[22]康桓瑞,“具零電流切換之新型交錯式半橋轉換器分析與設計”,國立雲林科技大學電機工程系,碩士論文,2010。
[23]M.H.Rashid, “Power Electronics:Circuits,Devices,and Applications,” Pearson Education Taiwan Ltd, 2010
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔