(3.230.76.48) 您好!臺灣時間:2021/04/12 15:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉至曜
研究生(外文):Chih-Yao Liu
論文名稱:軟銲溫度對7050鋁合金機械性質及耐蝕性影響之研究
論文名稱(外文):Effects of Soldering Temperatures on the Mechanical Properties and Corrosion Resistance of 7050 Aluminum Alloy
指導教授:張世穎張世穎引用關係
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:62
中文關鍵詞:7050鋁合金軟銲溫度晶粒尺寸抗拉強度腐蝕電位
外文關鍵詞:soldering temperature7050 aluminum alloygrain sizetensile strengthcorrosion potential
相關次數:
  • 被引用被引用:1
  • 點閱點閱:353
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以7050鋁合金為研究材料,探討在不同的軟銲處理溫度條件對晶粒大小、抗拉強度、伸長率、抗腐蝕性和生成物的影響。軟銲溫度的設定分別為150℃、180℃、210℃及240℃等,加熱時間為48小時。研究中使用微硬度試驗測試表面硬度,以拉力試驗機量測斷裂強度,利用掃描式電子顯微鏡觀察試片拉力試驗斷面與表面形貌,並以電化學實驗測量腐蝕電位與電流大小,分析7050鋁合金經不同軟銲處理溫度後的抗蝕性。研究結果顯示: 7050鋁合金未經軟銲溫度處理之金相組織,其晶粒結構是晶胞狀(cell)與長島狀(island),相互混合而成,其晶粒的平均大小約30-40μm左右,當軟銲溫度為210℃與240℃時,其晶粒的平均大小約50-60μm左右。所以,軟銲處理溫度越高,晶粒受熱越容易成長。此外,7050鋁合金經48小時在150℃、180℃、210℃及240℃處理後,抗拉強度分別為: 612、536、480及365MPa;經微硬度測試,硬度值分別為175、127、107及99HV,顯示未經軟銲溫度處理的強度與硬度均較高,當軟銲溫度越高,晶粒逐漸成長,強度降低。經電化學實驗顯示,在3.5 wt.% NaCl水溶液中測試,經48小時在150℃、180℃、210℃及240℃處理後之7050鋁合金,腐蝕電位(Ecorr)分別是-0.78、-0.86、-0.96及-1.11V,腐蝕電流(Icorr)分別是1.02 ×10-8、7.36 ×10-7、2.65 ×10-7及2.46 ×10-6 A/cm2,當腐蝕電位越高、電流越低,代表越不易腐蝕,顯示未經軟銲溫度處理的抗腐蝕性較高,腐蝕反應生成物以氧化鋁為主。
The grain size, tensile strength, elongation, and corrosion properties of the 7050 aluminum alloy have been investigated after 48 hours of heat treatment at various soldering temperatures 150℃, 180℃, 210℃ and 240℃. After the heat treatment the micro hardness testing and tensile testing were used to measure the surface hardness and tensile strength, respectively. The tensile fracture morphology was observed by scanning electron microscope (SEM) with energy dispersive spectrometer (EDS). The corrosion potential and corrosion current density were measured by electrochemical testing to determine the corrosion resistance of 7050 aluminum alloy after heat treatment and soldering temperatures. The results showed the grain structure was mixed of cell-like and the island-like grain. The average grain size was about 30-40μm for non soldering temperature treatment. After heat treatment at 210℃to 240℃, the average grain size was about 50-60μm . Therefore, increasing with the soldering temperature increased the grain size. After 48 hours heat treatment at 150℃, 180℃, 210℃ and 240℃, the tensile strengths of 7050 aluminum alloy were 612, 536, 480, 365MPa, and the micro hardness were 175, 127, 107, 99HV, respectively. The results showed increasing with the temperature decreased the tensile strength and hardness. The results of the electrochemical tests showed the corrosion potential (Ecorr) were -0.78, -0.86, -0.96 and -1.11V, and the corrosion current (Icorr) were 1.02×10-8, 7.36×10-7, 2.65×10-7 and 2.46×10-6 A/cm2 in 3.5 wt.% NaCl solution after 48 hours heat treatment at 150℃, 180℃, 210℃ and 240℃, respectively. The main corrosion products were alumina.
目錄
中文摘要……………………………………………………i
英文摘要……………………………………………………ii
誌謝 …………………………………………………iii
目錄 …………………………………………………iv
表目錄 …………………………………………………vi
圖目錄 …………………………………………………vii
第一章 緒論………………………………………………1
第二章 理論與文獻回顧……………………………2
2-1鋁合金的特性…………………………2
2-2鋁合金的種類…………………………2
2-3鋁合金的強化…………………………2
2-4腐蝕現象…………………………………9
2-5拉伸破裂形貌…………………………10
2-6晶界與晶粒尺寸……………………12
第三章 實驗步驟…………………………………………13
3-1試片製備…………………………………13
3-2軟銲溫度處理…………………………13
3-3拉伸試片製備…………………………14
3-4微硬度試驗………………………………15
3-5金相觀察……………………………………16
3-6 電化學試驗…………………………………17
3-6.1動電位極化法…………………17
3-6.2恆電位儀之參數………………………19
3-7 場發射掃描式電子顯微鏡…………………19
第四章 結果與討論………………………………………21
4-1 硬度試驗……………………………………21
4-2 金相觀察……………………………………22
4-3拉伸試驗…………………………………… 28
4-4 電化學試驗…………………………………37
第五章 結論………………………………………………49
參考文獻 ……………………………………………… 50
1. S. Abis, P. Mengucci and G. Riontino, “ A Study of the High-temperature Aging of Al-Cu-Mg-Ag Alloy 201”, Philosophical Magazine B, 67 (1993) pp.465-484.
2.莊東漢,曹龍泉,張世穎,“金屬工業關鍵性零組件加工技術計畫:軟銲填料特性究”,(2002)金屬工業研究發展中心。
3. 吳昇憲,“高強度含鈧Al-Zn-Mg-Cu合金之熱處理機械性質及顯微結構之研究”,(2002)元智大學機械工程所碩士論文。
4. J.C. Lin, H.L. Liao, W.D. Jehng, C.H. Chang and S.L. Lee, “ Effect of Heat Treatments on the Tensile Strength and SCC-resistance of AA7050 in an Alkaline Saline Solution”, Corrosion Science, 48(10) (2005) pp.3139-3156.
5. I.J. Polmer, “Light Alloys─Metallurgy of the Light Metals, 2nd ed., Edward Amold, London, England, (1989) pp.18-143.
6. 劉國雄、葉均蔚,“高強力鋁合金之熱處理-析出硬化”,金屬熱處理,14期(1985) pp.1-28.
7. J.W. Martin, “Micromechanisms in Particle-hardened Alloys”, Cambridge University Press, (1980) pp.1-78.
8. R.E. Reed-Hill and R. Abbaschian, “Physical Metallurgy Principles”, 3rd ed., PWS Publishing Company, (1994) pp.515-534.
9. P. Haasen, “Mechanical Properties of Solid Solution and Intermetallic Compounds”, Physical Metallurgy, Part II, R. W. Cahn and P. Haasen Ed., Elsevier Science Publishers, B. V., (1983) pp.1376-1381.
10. W.J. Fullen, “ Troubleshooting Salt Spray Failures: Tried-and-true Techniques Help Users Make Quick Decisions on Corrective Actions for Anodized Aluminum Structures”, 103 (12) (2005) pp.12-17.
11. T.D. Burleigh, “The Postulated Mechanisms for Stress Corrosion Cracking of Aluminum Alloys”, Corrosion, 47 (1991) pp.89-98.
12. A.F. Oliveira, Jr., M.C. de Barros, K.R. Cardoso and D.N. Travessa, “The Effect of RRA on the Strength and SCC Resistance on AA7050 and AA7150 Aluminum alloys”, Materials Science and Engineering, 379 (1-2) (2004) pp.321-326.
13. 劉孟崇,“7050鋁合金熱處理之研究”,(2099)逢甲大學材料科學與工程學系碩士論文。
14. J.H. Kim, J.T. Yeom, D.G. Lee, S.G. Lim and N.K. Park., “Effect of Scandium Content on the Hot Extrusion of Al–Zn–Mg–(Sc) alloy”, J. Materials Processing Technology, 187-188 (2007) pp.635–639.
15. L. H. Yang, M. F. Jou and T. J. Yang, “Corrosion Resistance of Nickel- Plated Copper in NaCl Aqueous Solution”, J. Materials Science and Engineering , 35(3) (2003) pp.193-198.
16. 柯賢文,“腐蝕及其防制”,全華科技圖書股份有限公司,(1995) pp.167-181.
17. S.Y. Chang, L.C. Tsao, T.Y. Li and T.H. Chuang, “ Joining 6061 Aluminum Alloy with Al–Si–Cu Filler Metals”, J. Alloy. Comp., 488, 1(20) (2009) pp.174-180.
18. S.Y. Chang, L.C. Tsao, Y.H. Lei, S.M. Mao and C.H. Huang, “Brazing of 6061 Aluminum alloy/Ti–6Al–4V Using Al–Si–Cu–Ge Filler Metals”, J. Materials Processing Technology, 212 (1) (2012) pp.8-14.
19. C.R. Brooks, “Heat Treatment, Structure and Properties of Nonferrous Alloys”,ASM (1992) pp.18 and 106~114.
20. H. Tsubakino, A. Yamamoto and T. Ohnishi, “Effect of Fe and Si on Precipitation of 7050 Aluminum Alloys”, International Conference on Thermo Mechanical Processing of Steels and Other Materials, (1997) pp.1059-1064.
21. 林照凱,“活性軟銲填料鹽水腐蝕及高溫氧化行為研究”, (2012)國立雲林科技大學碩士論文。
22. C.Y. Liu, Y.R. Chen, W.L. Li, M.H. Hon and M.C. Wang, “Electrochemical Properties of Joints Formed Between Sn-9Zn-1.5Ag-1Bi Alloys and Cu Substrates in a 3.5 wt.% NaCl Solution”, J. Electro. Materis., 36 (11) (2007) pp.1531-1535.
23. K. Stiller, P.J. Warren, V. Hansen, J. Angenete and J. Gjonnes, “Investigation of Precipitation in an Al–Zn–Mg Alloy afterTwo-step Ageing Treatment at 100° and 150°C”, Materials Science and Engineering, A270 (1999) pp.55-63.
24. S.M. Lee, S.I. Pyun and Y.G. Chun, “A Critical Evaluation of the Stress-Corrosion Cracking Mechanism in High-Strength Aluminum Alloys”, Metall. Trans., 22(A) (1991) pp. 2407-2413.
25. A. Kulkarni, P. Biswas, R. Narasimhan , A.A. Luo, R.K. Mishra, T.B. Stoughton and A.K. Sachdev, “An Experimental and Numerical Study of Necking Initiation in Aluminum Alloy Tubes during Hydroforming”, International Journal of Mechanical Sciences, 46 (12) (2004) pp.1727-1746.
26. R.C. Dorward and D.J. Beerntsen, “Grain Structure and Quench-Rate Effects on Strength and Toughness of AA7050 Al-Zn-Mg-Cu-Zr Alloy Plate”, Metall. Mater. Trans. A, 26(A) (1995) pp.2481-2484.
27. 陳克昌,“非鐵金屬材料的熱處理”,材料科技,逢甲大學材料科學系,(1983) pp.71-78.
28. K.T. Moore, J.M. Howe and D.R. Veblen, “High-re solution and Energy-filtered TEM Imaging of Ag Segregation to Planar Precipitate-matrix Interfaces in an Al-Cu-Mg-Ag Alloy”, Philosophical Mag. B, 82 (1) (2002) pp.13-33.
29. K. Nisancioglu, “Corrosion Mechanism of AZ91 Magnesium Alloy”, J. Electrochem. Soc., 137 (1990), pp.43-50.
30. 歐炳隆,“高強度航空用7000系鋁合金機械性質、抗應力腐蝕破壞及銲接熱影響區特性之研究”,(2001)國立中央大學博士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔