(3.215.183.251) 您好!臺灣時間:2021/04/22 10:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李偉誠
研究生(外文):Wei-cheng Li
論文名稱:應用於地下水污染復育之多功能生物碳顆粒載體開發研究
論文名稱(外文):Development of multifunctional biochar bead carriers for application in bioremediation of contaminated groundwater
指導教授:林啟文林啟文引用關係
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全衛生工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:126
中文關鍵詞:地下水生物復育生物碳釋氧物質微膠囊多功能生物碳顆粒載體
外文關鍵詞:Groundwater bioremediationOxygen-releasing SubstanceMicro-capsuleMulti-functional bio-char bead carrierBio-chars
相關次數:
  • 被引用被引用:1
  • 點閱點閱:217
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究首先乃以常見植物纖維,如竹子與稻殼經裂解程序製成生物碳後,採取Freundlich與Langmuir等溫吸附模式,探討何種熱裂解溫度製成之生物碳具有最佳吸附有機物之效果,作為後續之主要生物碳材料來源。其次,再以回應曲面法(response surface methodology, RSM)方式,開發出具有最佳釋氧長效性之多功能生物碳顆粒載體,並對開發完成之載體進行特性分析。最後則將多功能生物碳顆粒載體施用於透水性反應牆(permeable reactive barrier, PRB)系統,評估載體復育受苯環類污染物(BTEX)污染地下水之能力;此外,亦以掃描式電子顯微鏡(scanning electron microscope, SEM)分析實驗前後之生物碳、微膠囊及多功能生物碳顆粒載體。研究結果顯示:(1)由不同生物碳材料與熱裂解溫度製成之生物碳之吸附結果得知,分別以350 oC與750 oC焙製之竹碳與稻殼碳,均對BTEX具有良好之吸附能力;(2)由等溫吸附模式模擬結果獲知,以Freundlich模式較符合本研究之成果,且350 oC竹碳之吸附能力優於750 oC之稻殼碳;(3)經由RSM方法開發之多功能生物碳顆粒載體製作最佳配比,分別為PVA重量百分比濃度為10.34%,生物碳量為13.23 g,可製成具有最佳釋氧長效性且又具備良好結構性而不易崩解之載體,同時SEM觀察內部微生物仍然保有活性而可應用於流動之地下水體中;(4)多功能生物碳顆粒載體應用於有無現地混合菌之PRB系統中時,於受BTEX(濃度為120 mg/L)污染地下水中進行試驗時,皆具有明顯復育成效,顯示出本載體投入PRB系統中能有效提供氧氣與微生物,且能有效吸附BTEX;另外,後續則可依地下水之污染物種類而決定包埋何種特定分解菌,以復育特定污染源之地下水;(5)由SEM分析結果獲知,多功能生物碳顆粒載體具有許多孔隙,此孔隙不僅可以吸附有機污染物,更可提供現地或載體內部微生物良好之生長空間。
First of all, this study is using the common plant fiber (e.g. bamboo and rice husk) to produce bio-char through the pyrolysis process and employing the isothermal adsorption models (such as Freundlich and Langmuir) to explore what kind of the bio-char produced in a specific temperature may have the optimal effect to adsorb organic compounds, and so we may use it as a main source of the follow-up biochar. Secondarily, we use the response surface methodology (RSM) to develop the multifunctional biochar-bead-carrier with the best oxygen-releasing effect in a long-term base, and to analyze characteristics of the developed carrier. Finally, we apply the multifunctional biochar-bead-carrier onto the system of permeable reactive barrier (PRB) to evaluate the carrier’s capability of remediating the groundwater contaminated by BTEX. Moreover, we also use the scanning electron microscope (SEM) to analyze the biochar, micro capsule, and multifunctional biochar-bead carrier before and after our experiment. The research findings show, (1). According to the biochar made of different biochar materials and pyrolysis temperatures, the bamboo char and the rice-husk char baked at 350 oC and 750 oC both are having a good adsorbing capability on BTEX; (2) By simulated result of the isotherm adsorption model, we have learnt that Freundlich model is comparatively consistent with our research findings; adsorption of the bamboo char baked at 350 oC is much better than that of the rice-husk char baked at 750 oC; (3) The best ratio constituting the multifunctional biochar-bead-carrier developed by RSM are respectively as concentration of the PVA weight percentage is 10.34%, and the biochar weight is 13.23 g, which can be produced as an uneasy disintegrating carrier with the best oxygen-releasing effect and excellent structure. Furthermore, the internal microbe observed by SEM still maintains its activity that can be applied to the flowing groundwater; (4) Applying onto PRB system with and/or without mixed bacteria, the multifunctional biochar-bead-carrier has distinct restoring effect in the experiment proceeded within the groundwater contaminated by BTEX at concentration of 120 mg/L; it shows, the carrier in PRB System can effectively provide oxygen and microbes and adsorb BTEX. In addition, in compliance with contaminants’ categories of the groundwater, we may decide what kind of the decomposing bacteria we shall embed it to restore the groundwater contaminated by specific pollutants; (5) We learned from the SEM analysis, the multifunctional biochar-bead-carrier has many apertures which are not only adsorbing organic pollutants, but also providing a good growing space for microbes.
中文摘要 i
Abstract ii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 研究目的與內容 6
1.4 研究架構 7
第二章 文獻回顧 9
2.1 地下水整治與應用 9
2.1.1 空氣注入法 9
2.1.2 現地化學氧化法 10
2.1.3 自然衰減法 11
2.1.4 透水性反應牆法 12
2.2 地下水生物復育技術 12
2.2.1 生物強化對生物復育之影響 13
2.2.2 生物刺激對生物復育之影響 14
2.2.2-1 釋氧物質之特性 16
2.2.2-2 釋氧物質之相關應用 16
2.3 生物碳材料相關應用及研究 18
2.3.1 生物碳簡介 18
2.3.2 生物碳吸附機制 21
2.4 回應曲面法原理與應用 21
2.4.1 回應曲面法原理 22
2.4.2 中央混成設計 24
2.5 微生物載體相關技術與應用 25
2.5.1 微生物固定化技術相關比較與研究 26
2.5.2 微生物載體相關製作方式 28
2.6 石油碳氫化合物簡介 30
2.6.1 微生物代謝石油碳氫化合物之降解機制 32
第三章 材料與方法 34
3.1 研究材料 34
3.1.1 植物纖維來源 34
3.1.2 菌種來源 36
3.1.3 藥品種類 36
3.1.4 微膠囊製作藥品 37
3.1.5 多功能生物碳顆粒載體之製作藥品 38
3.1.6 分子生物技術相關分析 39
3.2 研究方法與步驟 40
3.2.1 生物碳材料製備程序 40
3.2.2 人工營養鹽配置 42
3.2.3 生物碳顆粒對BTEX之吸附批次試驗 42
3.2.4 微膠囊製作程序 44
3.2.5 以回應曲面法開發多功能生物碳顆粒載體 45
3.2.5-1 多功能生物碳顆粒載體製作程序 45
3.2.5-2 多功能生物碳顆粒載體連續流釋氧長效性試驗 46
3.2.6 多功能生物碳顆粒載體之載體背景試驗 48
3.2.6-1 多功能生物碳顆粒載體之載體崩解率試驗 48
3.2.6-2 多功能生物碳顆粒載體之載體活性試驗 48
3.2.7 多功能生物碳顆粒載體結合透水性反應牆復育受BTEX污染之地下水試驗 49
3.2.7-1 透水性反應牆試驗設計 52
3.3 分析分法與步驟 53
3.3.1 等溫吸附模式分析 53
3.3.2 水中BTEX濃度分析 54
3.3.3 水質DO及pH值分析 54
3.3.4 生物碳、微膠囊及多功能生物碳顆粒載體之電子顯微鏡分析 55
3.3.5 分子生物技術 56
3.3.5-1 菌群DNA萃取方法 58
3.3.5-2 聚合酶連鎖反應 58
3.3.5-3 變性梯度凝膠電泳 60
第四章 結果與討論 62
4.1 生物碳顆粒對BTEX之吸附批次試驗 62
4.1.1 竹子與稻殼經不同熱烈解溫度350 oC、550 oC、750 oC後對BTEX之吸附試驗 62
4.1.2 以等溫吸附模式模擬350 oC竹碳生物碳顆粒及750 oC稻殼碳生物碳顆粒 68
4.2 以回應曲面法開發多功能生物碳顆粒載體 74
4.2.1 回應曲面法試驗設計 74
4.2.2 多功能生物碳顆粒載體連續流釋氧試驗 76
4.2.3 回應曲面法結果分析 79
4.2.4 回應曲面法驗證試驗 85
4.2.5 多功能生物碳顆粒載體載體崩解率分析試驗 86
4.2.6 多功能生物碳顆粒載體活性分析試驗 87
4.3 多功能生物碳顆粒載體結合PRB系統復育受BTEX污染之地下水試驗 88
4.3.1 多功能生物碳顆粒載體結合PRB系統中之BTEX去除率變化 88
4.3.2 多功能生物碳顆粒載體結合PRB系統 中之DO及pH變化 91
4.4 生物碳、微膠囊及多功能生物碳顆粒載體之電子顯微鏡分析 94
4.4.1 生物碳之SEM分析結果 94
4.4.2 微膠囊之SEM分析結果 95
4.4.3 多功能生物碳顆粒載體之SEM分析結果 96
第五章 結論與建議 99
5.1 結論 99
5.2 建議 100
參考文獻 101
行政院勞工委員會,(2010),GHS危害物質資訊查詢http://ghs.cla.gov.tw/index.aspx
卓坤慶,(2002),應用慢釋氧物質處理受石油碳氫化合物污染之地下水-現地模場試驗,台灣大學環境工程學系,碩士論文。
王良偉,(2000),以空氣貫入法整治BTEX污染場址研究,中山大學環境工程學系,碩士論文。
王寧、侯艷佛、彭靜靜、戴九蘭、蔡超,(2002), “生物碳吸附有機污染物的研究進展,” 環境化學,31(3):287–295。
行政院環保署公告毒性化學物質物質安全資料表(MSDS),http://toxiceric.epa.gov.tw/Chm_/Chm_Index.aspx?viewPage=Query&;type=MSDS
江澤慧、張東升、費本華、岳永德、陳曉紅,(2004), “碳化溫度對竹碳微觀結構及電性能的影響,” 新型碳材料,19(4):249–253。
李木金、劉涉江、姜斌、李鑫鋼,(2005), “固體釋氧化合物用於地下水生物修復,”中國給水排水,21(10)
呂世欽,(2004),白殭菌蛋白質分解酵素發酵製備之研究探討,私立朝陽科技大學應用化學系研究所,碩士論文。
吳承翰,(2011),新穎釋氧型固定化菌體顆粒復育受BTEX污染之地下水研究,雲林科技大學環境與安全衛生工程系,碩士論文。
周建斌、鄭叢靜、傅金和,(2008), “奈米TiO2改性竹碳對空氣中苯的吸附與降解,” 南京林業大學學報,自然科學版,32(6):5–8。
郭育嘉,(2009),以釋氧化劑物質處理受石油碳氫化合物污染之地下水,中山大學環境工程學系,碩士論文。
陳谷汎、高志明、蔡啟堂,(2002), “土壤及地下水生物復育技術,” 工業污染防治季刊,(84):136–157。
陳立軒,(2006),透水性反應牆之生物分解能力與菌群分佈研究,大葉大學環境工程學系,碩士論文。
陳廷育,(2007),以釋氧物質加強受石油碳氫化合物污染地下水之好氧生物復育效率,中山大學環境工程學系,博士論文。
陳俊吉,(2003),利用回應曲面法探討添加胺基酸對肌酸酵素生產之影響,成功大學化學工程學研究所,碩士論文。
楊昭瑜,(2010),以反應曲面法(RSM)探討新型吸附劑最佳之多反應值組合,淡江大學水資源及環境工程學系,碩士論文。
董軍、趙勇勝、黃奇文、陳延君,(2004), “用雙層PRB技術處理垃圾填埋場地下水污染的可行性研究,” 環境科學學報,24(6):1021–1026。
賴家煒,(2010),牡蠣殼之再利用研究,新竹教育大學應用科學系,碩士論文。
劉興和,(2005),地下水中MTBE與BTEX電解去除之研究,朝陽科技大學環境工程與管理系,碩士論文。
崔明超、陳繁忠、傅家謨、盛國英,(2003),固定化微生物技術在廢水處理中的研究進展,化工環保,第二十三卷,第5期,第261–264頁。
郭育嘉,(2009),以釋氧化劑物質處理受石油碳氫化合物污染之地下水,中山大學環境工程學系,碩士論文。
陳文福,(2003),台灣地區之地下水氧化還原環境及污染宿命,水文地質調查與應用研討會論文集,第85–101頁。
陳廷育,(2007),「以釋氧物質加強受石油碳氫化合物污染地下水之好氧生物復育效率」,博士論文,國立中山大學環境工程研究所,高雄市。
劉帥、張培玉、曲洋、郭沙沙,(2009),包埋法固定化微生物技術中的載體選擇及在污水生物處理中的應用,河南科學,第二十七卷,第5期,第554–558頁。
劉詔文,(2004),生物反應牆去除地下水中三氯乙烯和氯乙烯之研究,中央大學環境工程學系,碩士論文。
盧至人,(2002),現地生物復育技術,台灣土壤及地下水環境保護協會簡訊,第五期,第3–5頁。
環保署,(2011),「地下水污染管制標準」。
環保署,(2008),土壤及地下水受比水重非水相液體污染場址整治技術選取、系統設計要點與注意事項參考手冊,http://www.epa.gov.tw。
環保署,(2008),96年度環保科技育成中心計畫,以釋氧化劑整治牆處理受油污染之地下水。
Amin, G. A., (2011), “Ntegrated two-stage process for biodesulfurization of model oil by vertical rotating immobilized cell reactor with the bacterium rhodococcus erythropolis”, Journal of Petroleum &; Environmental Biotechnology, 2: 107.
Andreoni, V., L. Gianfreda, (2007), “Bioremediation and monitoring of aromatic-polluted habitats”, Applied Microbiology and Biotechnology, 76: 287–308.
Atlas, R. M., (1975), “Effects of temperature and crude oil composition on petroleum biodegradation”, Journal of Applied Microbiology, 30: 396–403.
Bai, X., Ye, Z. F. Li, Y. F. Zhou, L. C. and Yang, L. Q. (2010) “Preparation of crosslinked macroporous PVA foam carrier for immobilization of microorganisms,” Process Biochemistry, 45:60–66.
Bartling, J., M. Schloter and B.M. Wilke, (2010), “ Ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME) can affect distribution pattern of inorganic N in soil”, Biology and Fertility of Soils, 46(3): 299–302.
Beesley, L., M. Marmiroli, L. Pagano, V. Pigoni, G. Fellet, T. Fresno, T. vamerali, M. Bandiera, N. Marmiroli, (2013), “Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.)”, Science of The Total Environment, 454–455: 598-603.
Bianochi-Mosquera, G. C., R. M. Allen-King., D. M. Mackay, (1994), “Enhanced degradation of dissolved benzene and toulene using a solid oxygen-releasing compound,” Ground Water Monit. Rev., Winter, 120–128.
Bohan, D.G., W.S. Schlett, (1999), “Enhanced natural bioremediation using a time release oxygen compound,” In Situ Biorem. Pet. Hydrocarbon Other Org. Compd., Battelle Press, Columbus, Ohio, 475–480.
Bowan, L., E. Geiger, (1984), “Optimization of fermentation conditions of alcohol production,” Biotechnol. Bioeng., 26: 1492–1497.
Box, G.E.P., Wilson K.B., (1951), “On the experimental attainment of optimum conditions,” J. R. Stat. Soc. B, 13: 1–45.
Bolliger, C., P. Ho‥hener, D. Hunkeler, K. Ha‥berli, J. Zeyer, (1999), “Intrinsic bioremediation of a petroleum hydrocarbon-contaminated aquifer and assessment of mineralization based on stable carbon isotopes” Biodegradation, 10: 201–217.
Brar, S.K., Verma, M., Surampalli, R.Y., Misra, K., Tyagi, R.D, Meunier, N., Blais, J.F., (2006), “Bioremediation of hazardous wastes – a review”, Practice Period. Hazard. Toxic Radioact. Waste Manage., 10(2): 59–72.
Carmichael, L. M., and F. K. Pfaender, (1997), “The effect of inorganic and organic supplements on the microbial degradation of phenanthrene and pyrene in soils”, Biodegradation, 8: 1–13.
Chaillan, F., C. H. Chaˆıneau, V. Point, A. Saliot, J. Oudot, (2006), “Factors inhibiting bioremediation of soil contaminated with weathered oils and drill cuttings”, Environmental Pollution, 144: 255–265.
Ch&;acirc;ıneau, C. H., G. Rougeux, C. Y′epr′emian, and J. Oudot, (2005),“Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil”, Soil Biology and Biochemistry, 37: 1490–1497.
Chapelle, F.H., (1999), “Bioremediation of petroleum hydrocarbon cintaminated ground water: the perspectives of history and hydrology”, Ground Water, 37: 122–132.
Chapelle, F.H., J.E. Landmeyer, and P.M. Bradley, (2000), “Identifying the distribution of terminal electron-accepting processes (TEAPS) in ground-water systems” Dallas, Workshop on Monitoring Oxidation-Reduction Processes for Ground-Water Restoration, Workshop Summary, Texas, United States Environmental Protection Agency, 5–17.
Charles E. Schaefer, X. Yang, O. Pelz, D. T. Tsao, S. H. Streger, Robert J. Steffan, (2010b), “Aerobic biodegradation of iso-butanol and ethanol and their relative effects on BTEX biodegradation in aquifer materials”, Chemosphere, 81: 1104–1110.
Chen, K.F., C. M. Kao, C. W. Chen, R. Y. Surampalli, M. S. Lee, (2010) “Control of petroleum-hydrocarbon contaminated groundwater by intrinsic and enhanced bioremediation”, Journal of Environmental Sciences, 22(6): 864–871.
Chen, L., F. Liu, Y. Liu, H.Z. Dong, P. J. S. Colberg, (2011), “Benzene and toluene biodegradation down gradient of a zero-valent iron permeable reactive barrier” Journal of Hazardous Materials, 188: 110–115.
Cheynier, V., M. Feinberg, C. Chararas., C. Ducauze, (1983), “Application of response surface methodology to evaluation of bioconversion experimental conditions,” Appl. Environ. Microbiol., 45: 634–639.
Chiellini, E., A. Corti, S.D’Antone, R. Solaro, (2003) “Biodegradation of poly (vinyl alcohol) based materials”, Progress in Polymer Science, 28(6): 963–1014.
Chien, H. Y., C. M. Kao, S. C. Chen, and Y. L. Chen, (2008), “Bioremediation of a petroleum-hydrocarbon contaminated aquifer by in situ biosparging system”, Journal of Biotechnology, 136: S653.
Colwell, R. R., J. D. Walker, J. J. Cooney, (1977), “Ecological aspects of microbial degradation of petroleum in the marine environment”, Critical Reviews in Microbiology, 5: 423–445.
Cunningham, C. J., I. B. Ivshina, V. I. Lozinsky, M. S. Kuyukina, J. C. Philp, (2004), “Bioremediation of dieselcontaminated soil by microorganisms immobilised in polyvinyl alcohol,” International Biodeterioration and Biodegradation, 54: 167–174.
Cunningham, J. A., H. Rahme, G. D. Hopkins, C. Lebron, M. Reinhard, (2001), “Enhanced in situ bioremediation of BTEX-contaminated groundwater by combined injection of nitrate and sulphate”, Environmental Science and Technology, 35: 1663–1670.
Dave, R. and D. Madamwar, (2006) “Esterification in organic solvents by lipase immobilized in polymer of PVA-alginate-boric acid” Process Biochemistry, 41: 951–955.
Davis, T. A., F. Llanes, B. Volesky, A. MUCCI, (2003), “Metal selectivity of sargassum spp. and their alginates in relation to their r-l-guluronic acid content and conformation”, Environmental Science and Technology, 37:261–267.
Erto, A., A. Lancia, I. Bortone, A. D. Nardo, M. Di Natale, D. Musmarra, (2011), “A procedure to design a Permeable Adsorptive Barrier (PAB) for contaminated groundwater remediation”, Journal of Environmental Management, 92: 23–30.
Estevez, E., M. C. Veiga, C. Kennes, (2005), “Biodegradation of toluene by the new fungal isolates Paecilomyces variotii and Exophiala oligosperma”, Journal of Industrial Microbiology and Biotechnology, 32: 33–37.
Farhadian, M., C. Vachelard, D. Duchez, and C. Larroche, (2008b) “In situ bioremediation of monoaromatic pollutants in groundwater: A review”, Bioresource Technology, 99: 5296–5308.
Farhadian, M., D. Duchez, C. Vachelard, and C. Larroche, (2008a), “Monoaromatics removal from polluted water through bioreactors–A review”, Water Research, 42: 1325–1341.
Farhadian, M., Larroche, C., Borghei, M., Troquet, J., Vachelard, C., 2006. Bioremediation of BTEX-contaminated groundwater through bioreactors, 4me colloque Franco-Roumain de chimie applique′e, Universite′ Blaise Pascal, Clermont-Ferrand, France, 28 June–2 July 2006, p. 438.
Fu, D., Y. Zhang, F. Lv, P. K. Chu, J. Shang, (2012), “Removal of organic materials from TNT red water by Bamboo Charcoal adsorption” , Chemical Engineering Journal, 193–194: 39-49.
Fritsche, W. and M. Hofrichter, (2000), “Aerobic degradation by microorganisms,” in Environmental Processes- Soil Decontamination, J. Klein, Ed., pp. 146–155, Wiley-VCH, Weinheim, Germany,.
Frutos, F. J. G., O. Escolano, S. Garcia, M. Babin, M. D. Fernandez, (2010), “Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil”, Journal of Hazardous Materials, 183: 806–813.
Goi, A., M. Viisimaa, M. Trapido, and R. Munter, 2011, “Polychlorinated biphenyls-containing electrical insulating oil contaminated soil treatment with calcium and magnesium peroxides”, Chemosphere, 82(8): 1196–1201.
Hartmans, S., and J. A. M. De Bont, (1992), “Aerobic vinyl chloride metabolism in Mycobacterium arurum L1”, Applied and Environmental Microbiology, 58: 1220.
Heiderscheidt, J. L., R. L. Siegrist, and T. H. Illangasekare, (2008), “Intermediate-scale 2D experimental investigation of in situ chemical oxidation using potassium permanganate for remediation of complex DNAPL source zones”, Journal of Contaminant Hydrology, 102: 3–16.
Hommel, R. K., (1990), “Formation and phylogenetic role of biosurfactants”, Journal of Applied Microbiology, 89: 158–119.
Huang, Z. H., F. Zhang, M. X. Wang, R. Lv, F. Kang, (2012), “Growth of carbon nanotubes on low-cost bamboo charcoal for Pb(II) removal from aqueous solution”, Chemical Engineering Journal, 184: 193-197.
Hu, W.W., M. W. Lang, P. H. Krebsbach, (2008), “Development of adenovirus immobilization strategies for in situ gene therapy”, The Journal of Gene medicine, 10(10): 1102–1112.
Hynes, L., R. Jamieson, G. Gagnon, M.S. Brooks, (2009), “Use of an oxygen-releasing compound to aerate eutrophic reservoir water”, Journal of Environmental Science and Health, 44 (9): 906–913.
Iovino, P., R. Polverino, S. Salvestrini and S. Capasso, (2009) “Temporal and spatial distribution of BTEX pollutants in the atmosphere of metropolitan areas and neighbouring towns”, Environmental Monitoring and Assessment, 150: 437–444.
Jeong, S. K., J. S. Cho, , I. S. Kong, , H. D. Jeong, J. K. Kim, (2009), “Purification of aquarium water by PVA gel-immobilized photosynthetic bacteria during goldfish rearing”, Biotechnology and Bioprocess Engineering, 14: 238–247.
Kao, C. M., C. Y. Chen, S. C. Chen, H. Y. Chien, Y. L. Chen, (2008), “Application of in situ biosparging to remediate a petroleum-hydrocarbon spill site: Field and microbial evaluation”, Chemosphere, 70: 1492–1499.
Kao, C. M., W. Y. Huang, L. J. Chang, T.Y. Chen, H. Y. Chien, F. Hou, (2006), “Application of monitored natural attenuation to remediate a petroleum-hydrocarbon spill site” Water Science and Technology, 53: 321–328.
Kao, C.M., W.Y. Huang, L.J. Chang, T.Y. Chen, H.Y. Chien, F. Hou, (2006), “Application of monitored natural attenuation to remediate a petroleum-hydrocarbon spill site” Water Science and Technology, 53, 321–328.
Karel, S.F., Libicki, S.B., Robertson, C.R., (1985), “The immobilization of whole cells-engineering principles”, Chemical Engineering Science, 40(8): 1321–1354.
Karhu, K., T. Mattila, I. Bergstr&;ouml;m, K. Regina, (2011), “Biochar addition to agricultural soil increased CH4 uptake and water holding capacity – Results from a short-term pilot field study”, Agriculture, Ecosystems &; Environment, 140: 309-313.
Karpenko, O., V. Lubenets, E. Karpenko, and V. Novikov, (2009) “Chemical oxidants for remediation of contaminated soil and water–A review”, Chemistry and Chemical Technology, 3(1): 41–45.
Keitaa, G., A. Ricard, R. Audebert, E. Pezrona, L. Leiblera, (1995), “The poly(vinyl alcohol)-borate system influence of polyelectrolyte effects on phase diagrams”, Polymer, 36: 49–54.
Kim, D., Y. Kim, S. Kim, G. Zylstra, Y. Kim, E. Kim, (2002), “Monocyclic aromatic hydrocarbon degradation by Rhodococcus sp. strain DK17”. Applied and Environment Microbiology, 68: 3270–3278.
Kim, J. M., N. T. Le, B. S. Chung, J. H.Park, J. W. Bae, E.L. Madsen, C. O. Jeon, (2008), “Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium Pseudoxanthomonas spadix BDa59”, Applied and Environment Microbiology, 74:7313–7320.
Kim, J., C.Jeon, (2009), “Isolation and characterization of a new benzene, toluene, and ethylbenzene degrading bacterium, Acinetobacter sp. B113”, Current Microbiology, 58: 70–75.
Kim, S.-J., D. H. Choi, D. S. Sim, Y.-S. Oh, (2005), “Evaluation of bioremediation effectiveness on crude oil-contaminated sand”, Chemosphere, 59: 845–852.
Langwaldt, J. H., J. A. Puhakka, (2000), “On-site biological remediation of contaminated groundwater: a review”, Environmental Pollution, 107: 187–197.
Lee, S.H, H. Y. Jo, S.T. Yun and Y. J. Lee, (2010), “Evaluation of factors affecting performance of a zeolitic rock barrier to remove zinc from water”, Journal of Hazardous Materials, 175: 224–234.
Li, H., Y. H. Liu, N. Luo, X. Y. Zhang, T. G. Luan, J. M. Hu, Z. Y. Wang, P. C. Wu, M. J. Lu, J. Q. Chen, (2006), “Biodegradation of benzene and its derivatives by a psychrotolerant and moderately haloalkaliphilic Planococcus sp. strain ZD22”, Microbiological Research, 157: 629–636.
Liao, P., Z. M. Ismael, W. Zhang, S. Yuan, M. Tong, K. Wang, J. Bao, (2012), “Adsorption of dyes from aqueous solutions by microwave modified bamboo charcoal”, Chemical Engineering Journal, 195-196: 339-346.
Lin CW, Chen LH (2007) The composition, structure, and use of a set-up for an oxygen-release unit. Chinese patent M323474, Taiwan, ROC.
Lin, C.W., L.H. Chen, Y.P. I, and C.Y. Lai, (2010), “Microbial communities and biodegradation in lab-scale BTEX-contaminated groundwater remediation using an oxygen-releasing reactive barrier”, Bioprocess and Biosystems Engineering, 33: 383–391.
Lovley, D.R., (1997), “Potential for anaerobic bioremediation of BTEX in petroleum-contaminated aquifers”, Journal of Industrial Microbiology &; Biotechnology, 18: 75–81.
Lozinsky, V.I., and F.M. Plieva, (1998), “Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization. 3. Overview of recent research and developments”, Enzyme and Microbial Technology, 23: 227–242.
Lynch, J. M., A. J. Moffat, (2005), “Bioremediation-prospects for the future application of innovative applied biological research”, Annals of Applied Biology, 146: 217–221.
Malik, A., (2006), “Environmental microbiology”, Centre for Rural Development &; Technology, Indian Institute of Technology Delhi, New Delhi.
Maliyekkal, S. M., E. R. Rene, L. Philip, T. Swaminathan, (2004), “Performance of BTX degraders under substrate versatility conditions”, Journal of Hazardous Materials, 109: 201–211.
Martı′nez, S., F. M. Cuervo-Lo′pez, J. Gomez, (2007), “Toluene mineralization by denitrification in an up flow anaerobic sludge blanket (UASB) reactor”, Bioresource Technology, 98: 1717–1723.
Mascolo, G., R. Ciannarella, L. Balest, A. Lopez, (2008), “Effectiveness of UV-based advanced oxidation processes for the remediation of hydrocarbon pollution in the groundwater: A laboratory investigation”, Journal of Hazardous Materials, 152: 1138–1145.
Matsumura, S., H, Kurita., H. Shimokobe, (1993), “Anaerobic biodegradability of polyvinyl alcohol”, Biotechnology Letters, 15(7): 749–754.
Maurer, M., B. E. Rittmann, (2004), “Modeling intrinsic bioremediation for interpret observable biogeochemical footprints of BTEX biodegradation: the need for fermentation and abiotic chemical processes”, Biodegradation, 15: 405–417.
McCarty, P. L., M. N. Goltz, G. D. Hopkins, M. E. Dolan, J. P. Allan, B. T. Kawakami, T. J. Carrothers, (1998), “Full-scale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection”, Environmental Science and Technology, 32: 88–100.
Method 5021A: Volatile Organic Compounds in Various Sample Matrices Using Equilibrium Headspace Analysis, US Environmental Protection Agency, 2003, http://www.epa.gov/epaoswer/hazwaste/test/pdfs/5021a_r1.pdf.
Mohamed, A. M. I., N. El-menshawy, A. M. Saif, (2007), “Remediation of saturated soil contaminated with petroleum products using air sparging with thermal enhancement”, Journal of Environmental Management, 83: 339–350.
Mordocco, A., C. Kuek, R. Jenkins, (1999), “Continuous degradation of phenol at low concentration using immobilized Pseudomonas putida”, Enzyme and Microbial Technology, 25: 530–536.
Morishita, N., T. Katsuda, S. Kubo, A. Gotoh, H. Yamaji, (2010), “Immobilization of 293 cells using porous support particles for adenovirus vector production”,Cytotechnology, 62: 293–300.
Mozzetti, V., F. Grattepanche, D. Moine, B. Berger, E. Rezzonico, L. Meile,F. Arigoni, C. Lacroix, (2010), “New method for selection of hydrogen peroxide adapted bifidobacteria cells using continuous culture and immobilized cell technology”, Microbial Cell Factories, 9: 60.
Nebe, J., B.R. Baldwin, R.L. Kassab, L. Nies, and C.H. Nakatsu, (2009), “Quantification of aromatic oxygenase genes to evaluate enhanced bioremediation by oxygen releasing materials at a gasoline-contaminated site”, Environmental Science and Technology, 43: 2029–2034.
Neri, D.F.M., V.M. Balc&;atilde;o, M.G. Carneiro-da-Cunha, L.B. Carvalho Jr., J.A. Teixeira, (2008) “Immobilization of b-galactosidase from Kluyveromyces lactis onto a polysiloxane- polyvinyl alcohol magnetic (mPOS-PVA) composite for lactose hydrolysis” Catalysis Communications, 9: 2334–2339.
Nikolova, N., V. Nenov, (2005), “BTEX degradation by fungi”, Water Science and Technology, 51: 87–93.
Nyyss&;ouml;nen, M., A. Kapanen, R. Piskonen, T. Lukkari, M. It&;auml;vaara, (2009), “ Functional genes reveal the intrinsic PAH biodegradation potential in creosote-contaminated groundwater following in situ biostimulation”, Applied Microbiology and Biotechnology, 84: 169–182.
Qiu, Y., Z. Zheng, Z. Zhou, G. D. Sheng, (2011), “Effectiveness and mechanisms of dye adsorption on a straw-based biochar” , Bioresource Technology, 100(21): 5348-5351.
Rahman, R. N. Z. A., F. M. Ghazali, A. B. Salleh, M. Basri, (2006), “Biodegradation of hydrocarbon contamination by immobilized bacterial cells,” Journal of Microbiology, 44: 354–359.
Rainwater, K., M.P. Mayfield, C. Heintz, and B.J. Claborn, (1993), “Enhanced in situ biodegradation of diesel fuel by cyclic vertical water table movement: Preliminary studies”, Water Environment Research, 65: 717–725.
Reinhard, M., G. D. Hopkins, E. Steinle-Darling, C. A. LeBron, (2005), “In situ biotransformation of BTEX compounds under methanogenic conditions”, Ground Water Monitor, 25: 50–59.
Roling, W. F. M., H. W. V. Verseveld, (2002), “Natural attenuation: what does the subsurface have in store?”, Biodegradation, 13: 53–64
Roychoudhury, A. N., G. L. Merrett, (2006), “Redox pathways in a petroleum contaminated shallow sandy aquifer: iron and sulfate reductions”, Science of the Total Environment, 366: 262–274.
Sakai, S., K. Antoku, T. Yamaguchi, K. Kawakami, (2008) “Development of electrospun poly(vinyl alcohol) fibers immobilizing lipase highly activated by alkyl-silicate for flow-through reactors” Journal of Membrane Science, 325: 454–459.
Santharam, S., J. Ibbini, L.C. Davis, L.E. Erickson, (2011), “Field study of biostimulation and bioaugmentation for remediation of tetrachloroethene in groundwater”, Remediation Journal, 21(2): 51–68.
Schaefer, C. E., R. M. Towne, S. Vainberg, J. E. McCray, R. J. Steffan, (2010), “Bioaugmentation for treatment of dense non-aqueous phase liquid in fractured sandstone blocks”, Environmental Science and Technology, 44(13): 4958–4964.
Schulze, S., A. Tiehm, (2004), “Assessment of microbial natural attenuation in groundwater polluted with gasworks residues”, Water Science and Technology, 50: 347–353.
Semprini, L., M. E. Dolan, G. D. Hopkins , P. L. McCarty, (2009), “Bioaugmentation with butane-utilizing microorganisms to promote in situ cometabolic treatment of 1,1,1-trichloroethane and 1,1-dichloroethene”, Journal of Contaminant Hydrology, 103: 157–167.
Shetty, K. V., R. Ramanjaneyulu, G. Srinikethan, (2007), “Biological phenol removal using immobilized cells in a pulsed plate bioreactor: Effect of dilution rate and influent phenol concentration”, Journal of Hazardous Materials, 149: 452–459
Simon, F.G., and T. Meggyes, (2000), “Removal of organic and inorganic pollutants from groundwater using permeable reactive barriers Part 1. Treatment processes for pollutants”, Land Contamination &; Reclamation, 8: 103–117.
Siripattanakul, S., W. Wirojanagud, J. McEvoy, E. Khan, (2008), “Effect of cell-to-matrix ratio in polyvinyl alcohol immobilized pure and mixed cultures on atrazine degradation”, Water, Air, and Soil Pollution, 8: 257–266.
Sugashini, S., K. M. M. S. Begum, (2013), “Performance of ozone treated rice husk carbon (OTRHC) for continuous adsorption of Cr (VI) ions from synthetic effluent”, Journal of Environmental Chemical Engineering, 1: 79-85.
Suthersan, S. S., (1996), “Remediation engineering design concepts”, CRC Press, Inc.
Tatarkov&;aacute;, V., E. Hiller, M. Vacul&;iacute;k, (2013), “Impact of wheat straw biochar addition to soil on the sorption, leaching, dissipation of the herbicide (4-chloro-2-methylphenoxy)acetic acid and the growth of sunflower (Helianthus annuus L.) ”, Ecotoxicology and Environmental Safety, 92: 215-221.
Thiruvenkatachari, R., Thiruvenkatachari, S. Vigneswaran, and R. Naidu, (2008), “Permeable reactive barrier for groundwater remediation”, Journal of Industrial and Engineering Chemistry, 14: 145–156.
Tiburtius, E. R., P. Peralta-Zamora, A. Emmel , (2005), “Treatment of gasoline-contaminated waters by advanced oxidation processes”, Journal of Hazardous Materials, 126: 86–90.
USEPA, 1989, "Evaluation of groundwater extraction remedies", , EPA office of emergency and remedial responses, washington, DC,vols. 1 and 2.
USEPA, A Citizen’s Guide to Bioremediation, EPA 542-F-01-001, April 2001
Van Zwieten, L, Kimber, S, Morris, S, Chan, YK, Downie, A, Rust, J, Joseph S, Cowie A, (2010), “Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility,” Plant and Soil, 327: 235–246.
Venosa, A. D., X. Zhu, (2003), “Biodegradation of crude oil contaminating marine shorelines and freshwater wetlands,” Spill Science and Technology Bulletin, 8: 163–178.
Villatoro-Monzon, W. R., A. M. Mesta-Howard, E. Razo-Flores, (2003), “Anaerobic biodegradation of BTEX using Mn(IV) and Fe(III) as alternative electron acceptors”, Water Science and Technology, 48: 125–131.
Whang, L. M., P. W. G. Liu, C. C. Ma, and S. S. Cheng, (2008), “Application of biosurfactants, rhamnolipid and surfactin, for enhanced biodegradation of diesel-contaminated water and soil”, Journal of Hazardous Materials, 151: 155–163.
Widdowson, M. A., (2004), “Modeling natural attenuation of chlorinated ethenes under spatially varying redox conditions”, Biodegradation, 15: 435–451.
Yeh, C. H., C. W. Lin, and C. H. Wu, (2010), “A permeable reactive barrier for the bioremediation of BTEX-contaminated groundwater: Microbial community distribution and removal efficiencies”, Journal of Hazardous Materials, 178: 74–80.
Yu, X. Y., C. L. Mu, C. Gu, C. Liu, X. J. Liu, (2011), “Impact of woodchip biochar amendment on the sorption and dissipation of pesticide acetamiprid in agricultural soils” , Chemosphere, 85(8): 1284-1289.
Zhang, J. , H. Fu, X. Lv, J. Tang, X. Xu, (2012), “Removal of Cu(II) from aqueous solution using the rice husk carbons prepared by the physical activation process”, Biomass and Bioenergy, 35(1): 464-472.
Zuo, S., Y. Teng, H. Yuan, M. Lan, (2008), “Direct electrochemistry of glucose oxidase on screen-printed electrodes through one-step enzyme immobilization process with silica sol-gel/polyvinyl alcohol hybrid film”, Sensors and Actuators B: Chemical, 133(2): 555–560.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔