(3.227.208.0) 您好!臺灣時間:2021/04/18 12:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊智翰
研究生(外文):Jhih-han Yang
論文名稱:境外不同區域長程傳輸對台灣空氣品質影響之模擬研究
論文名稱(外文):A modeling study on the effect of long-range transport from various districts of East Asia on air quality in Taiwan
指導教授:張艮輝張艮輝引用關係
指導教授(外文):Ken-hui Chang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全衛生工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:288
中文關鍵詞:長程傳輸空氣品質模式 (CMAQ)懸浮微粒
外文關鍵詞:transboundary long-range transportCMAQFine particle
相關次數:
  • 被引用被引用:7
  • 點閱點閱:803
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:125
  • 收藏至我的研究室書目清單書目收藏:1
近年來隨著東亞各地區經濟快速的發展,空氣污染排放量也迅速成長,使得空氣污染物長程傳輸的影響日益重要。台灣於春、秋、冬三季常為東亞大氣污染物傳輸路徑的下風處,因此境外不同地區污染物經長程傳輸勢必對台灣空氣品質造成影響。
本研究利用CMAQ模式模擬2007年全年中國大陸,以及代表性月份(2月、5月、8月及11月)日本、韓國及中國六大地區懸浮污染物(PM)經長程傳輸對我國之影響。結果顯示,2007全年台灣PM2.5受中國傳輸影響之測站平均為9.2 ?慊/m3 (31%),且佔東亞影響比例約84%;然而,全灣PM2.5受日本及韓國長程傳輸影響濃度(四個月平均)分別為0.087 ?慊/m3(0.29%)及0.55 ?慊/m3(1.8%),對台灣PM2.5貢獻量相當低,因此說明台灣PM2.5主要貢獻來自中國大陸。其中以中國華東對台灣影響最大(約3.7 ?慊/m3),其次為華南(約 1.76 ?慊/m3),受東北影響最低(0.36 ?慊/m3)。台灣各空品區PM2.5受到中國傳輸影響濃度,以雲嘉南最嚴重(10.1 ?慊/m3),所有空品區受中國傳輸影響均佔東亞傳輸影響比例約80%以上;台灣各空品區受日本及韓國傳輸影響濃度一樣以雲嘉南較嚴重,但影響濃度皆小於1 ?慊/m3。2007年全年全台衍生性PM2.5受中國長程傳輸之影響以硫酸鹽的影響幅度最大(約2.49 ?慊/m3),其它依次為銨鹽(約1.21 ?慊/m3)、硝酸鹽(約 0.99 ?慊/m3)。二次PM組成份受中國傳輸影響均佔東亞傳輸影響的75% 以上,說明中國在台灣境外傳輸影響中扮演最重要角色。
The air quality in Asia is deteriorating on the whole in recent years due to the rapid, across-the-board economic and industrial development. Furthermore, due to the complicated air circulation patterns in Asia, long-distance transport of the pollutants occurs frequently.
The study use of the Community Multiscale Air Quality (CMAQ) and MM5 models to investigate long-range transport particulate matter in the Japan, Korea, China and six areas of China. The results show that monitoring stations average concentration of PM2.5 that affected on China transport was 9.2 ?慊/m3 (31%) in Taiwan in 2007, be conditioned 84% by East Asia. The Implications Concentration of PM2.5 is the most serious in Yun-Chia-Nan Air Quality Region (10.1 ?慊/m3). Besides, all the Air Quality Region that the affected on China transport were occupies 80% and upward with East Asia. The highest ratio of China long-range transport effect on the annual average of sulfate concentration in Taiwan abiout 53% (The monitoring stations average concentration), and the second highest is ammonium (about 47%), than is nitrate (about 35%) and SOA (about 20%). The secondary PM composition that the affected on the China transport were occupies 75% and upward with East Asia, therefore, the China transport plays an important role in Taiwan.
Atmospheric particulate matter (PM), the global climate and on visibility have been longstanding concerns of the air quality management community. Understanding the adverse effects of particles and devising appropriate control strategies requires spatial and temporal information on PM mass concentration.
摘要 i
ABSTRACT ii
目錄 iii
表目錄 v
圖目錄 xiv
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 懸浮微粒分類及特性 3
2.1.1 懸浮微粒來源及粒徑分佈 3
2.1.2 懸浮微粒之組成份特性 6
2.2 CMAQ模式模擬 8
2.2.1 CMAQ模式機制 9
2.3 歷年空氣懸浮微粒濃度變化之研究 12
2.4 懸浮微粒經長程傳輸之研究 14
2.4.1 模式模擬污染物長程傳輸之方法 14
2.4.2 亞洲地區長程傳輸之研究 15
第三章 研究方法 20
3.1 研究流程 20
3.2 模式模擬說明 20
3.2.1 模擬範圍 21
3.2.2 模擬時間之選擇 21
3.2.3 排放量說明 21
3.2.3.1 人為源排放量 22
3.2.3.2 生物源排放量 22
3.2.4 氣象資料說明 23
3.2.5 邊界及初始條件說明 23
3.3 空氣品質模式模擬驗證 24
3.4 各案例排放量使用說明 24
3.5 境外特定區域污染長程傳輸對台灣空氣品質之影響分析 26
3.5.1 中國長程傳輸對台灣污染物空氣品質影響之模擬 26
3.5.2 日本及韓國長程傳輸對台灣污染物空氣品質影響之模擬 27
3.5.3 中國六大地區長程傳輸對台灣污染物空氣品質影響之模擬 27
第四章 結果與討論 33
4.1 PM2.5質量濃度計算方法(PMx與PMi+j)之差異 33
4.2 基準案例模擬分析 41
4.2.1 排放量分析 41
4.2.2 空氣品質濃度空間分布分析 42
4.3 空氣品質模式對大氣中懸浮微粒之模擬能力分析 47
4.3.1 觀測與模擬值盒狀圖分析 47
4.3.2 觀測與模擬值相關性分析 48
4.4 境外特定區域長程傳輸對台灣空氣品質之影響分析 51
4.4.1中國大陸長程傳輸對台灣空氣品質之影響 51
4.4.1.1 中國長程傳輸對台灣PM10空氣品質之影響 51
4.4.1.2 中國長程傳輸對台灣PM2.5空氣品質之影響 58
4.4.1.3 中國長程傳輸對台灣PM2.5之組成份影響 67
4.4.2日本及韓國長程傳輸對台灣空氣品質之影響 83
4.4.2.1 日本及韓國長程傳輸對台灣PM10空氣品質之影響 83
4.4.2.2 日本及韓國長程傳輸對台灣PM2.5空氣品質之影響 93
4.4.2.3 日本及韓國長程傳輸對台灣PM2.5之組成份影響 105
4.4.3中國六大地區長程傳輸對台灣空氣品質之影響 136
4.4.3.1 中國六大地區長程傳輸對台灣PM10空氣品質之影響 136
4.4.3.2 中國六大地區長程傳輸對台灣PM2.5空氣品質之影響 164
4.4.3.3 中國六大地區長程傳輸對台灣PM2.5之組成份影響 191
4.4.4 綜合討論 263
第五章 結論與建議 266
5.1結論 266
5.1.1境外特定區域污染長程傳輸對台灣空氣品質之影響分析 266
5.2 建議 267
參考文獻 268
1.Aikawa, M., Ohara, T., Hiraki, T., Oishi, O., Tsuji, A., Yamagami, M., Murano, K., Mukai H., 2010. Significant geographic gradients in particulate sulfate over Japan determined from multiple-site measurements and a chemical transport model: Impacts of transboundary pollution from the Asian continent. Atmospheric Environment 44, 381-391.
2.Byun, D.W., Ching, J. K. S., 1999. Science algorithms of the EPA Models-3 community multiscale air quality (CMAQ) modeling system. U.S. EPA, Office of research and development Washington, DC 20460, EPA/600/R-99/030.
3.Byun, D., Schere, K.L., 2006. Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System. Applied Mechanics Reviews 59, 51-77.
4.Chan, C. Y., Xu, X. D., Li, Y. S.,Wong, K. H., Ding, G.. A., Chan, L. Y., Cheng, X. H., 2005. Characteristics of vertical profiles and sources of PM2.5, PM10 and carbonaceous species in Beijing. Atmospheric Environment 39, 5113-5124.
5.Canadian Council of Ministers of the Environment, 2000. Canada Wide Standards for Particulate Matter (PM) and Ozone.
6.Dabek-Zlotorzynska, E., Dann, T. F., Martinelango P. K., Celo, V., Brook, J. R., Mathieu, D., Ding, L., Austin, C. C., 2011. Canadian National Air Pollution Surveillance (NAPS) PM2.5speciation program: Methodology and PM2.5 chemical composition for the years 2003–2008. Atmospheric Environment 45, 673–686.
7.Green, M., Kuhns, H., Pitchford, M., Dietz, R., Ashbaugh, L., Watson, T., 2012. Application of the Tracer-Aerosol Gradient Interpretive Technique to Sulfur Attribution for the Big Bend Regional Aerosol and Visibility Observational Study. Journal of the Air &; Waste Management Association.
8.He, Z., Kim, Y. J., Ogunjobi, K. O., Hong, C. S., 2003. Characteristics of PM2.5 species and long-range transport of air masses at Taean background station, South Korea. Atmospheric Environment 37, 219-230.
9.Holloway, T., Levy, H., Carmichael, G., 2002. Transfer of reactive nitrogen in Asia: development and evaluation of a source–receptor model. Atmospheric Environment 36 (26), 4251–4264.
10.Jiang, W., Smyth, S., Giroux, E., Roth, H., Yin, D., 2006. Differences between CMAQ fine mode particle and PM2.5 concentrations and their impact on model performance evaluation in the lower Fraser valley. Atmospheric Environment 40, 4973-4985.
11.Kuribayashi, M., Ohara, Toshimasa., Morino, Yu., Uno, Itsushi., Kurokawa, J. , Hara, H., 2012. Long-term trends of sulfur deposition in East Asia during 1981–2005. Atmospheric Environment 59, 461-475.
12.Kuhns, H., Green, M., Pitchford, M., Vasconcelos, L., White, W., Mirabella, V., 2011. Attribution of Particulate Sulfur in the Grand Canyon to Specific Point Sources Using TracerAerosol Gradient Interpretive Technique (TAGIT). Journal of the Air &; Waste Management Association.
13.Koo, B., Wilson, G. M., Morris, R., Dunker, A., Yarwood, G., 2009. Comparison of Source Apportionment and Sensitivity Analysis in a Particulate Matter Air Quality Model. Environ. Sci. Technol. 43, 6669–6675.
14.Lin, C. Y., Wang, Z., Chen, W. N., Chang, S. Y., Chou, C. C. K., Sugimoto, N., Zhao, X., 2007. Long-range transport of Asian dust and air pollutants to Taiwan: observed evidence and model simulation. Atmos. Chem. Phys. 7, 423–434 .
15.Lin, M., Oki, T., Bengtsson, M., Kanae, S., Holloway, T., Streets D. G., 2008. Long-range transport of acidifying substances in East Asia—Part II,Source– receptor relationships. Atmospheric Environment 42, 5956– 5967.
16.Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., Hayasaka, T., 2007. An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos. Chem. Phys. 7, 4419–4444 .
17.Polichetti, G., Cocco, S., Spinali, A., Trimarco V., Nunziata, A., 2009. Effects of particulate matter (PM10, PM2.5 and PM1) on the cardiovascular system. Toxicology 261, 1-8.
18.Philinis, C., Seinfeld, J,.H., 1988. Development and evaluation of an eulerian photochemical gas aerosol model. Atmospheric Environmen 22, 1985-2001.
19.Richter, A., Burrows, J., Nub, H., Granier, C., Niemeier, U., 2005. Increase in tropospheric nitrogen dioxide over China observed from space. Nature 437, 129–132.
20.Seinfeld, J.H., Pandis, S.N., 1998. Atmospheric Chemistry and Physics: From Air Pollution to Global Change. John Wiley &; Sons, New York.
21.Shimadera, H., Kondo, A., Kaga, A., Shrestha, K. L., Inoue, Y., 2009. Contribution of transboundary air pollution to ionic concentrations in fog in the Kinki Region of Japan. Atmospheric Environment 43, 5894-5907.
22.Shankar, U., Bhave, P.V., Vukovich, J.M., Roselle, J.S., 2005. Implementation and initial applications of sea salt aerosol emissions and chemistry algorithms in the CMAQ v4.5—AERO4 module. In: The 2005 Models-3 Users Workshop, Chapel Hill, NC, 26–28 September 2005.
23.Santiago, M., Vivanco, M. G., Stein, A. F., Saylor, R., Ngan, F.,2010. USING SMOG CHAMBER DATA TO IMPROVE THE UNDERSTANDING OF SOA FORMATION. Presented at the 9th Annual CMAS Conference, Chapel Hill, NC.
24.US EPA, 2004. Air Quality Criteria for Particulate Matter. U.S. Environmental Protection, EPA/600/P-99/002aF.
25.Wilson, W.E., Suh, H.H., 1997. Fine particles and coarse particles: concentration relationships relevant to epidemiologic studies. Journal of the Air and Waste Management Association 47, 1238-1249.
26.Wagstrom, K. M. , Pandis, S. N., Yarwood, G., Wilson, G. M., Morris, R. E., 2008. Development and application of a computationally efficient particulate matter apportionment algorithm in a three-dimensional chemical transport model. Atmospheric Environment 42, 5650-5659.
27.Yarwood, G., Rao, S., Yocke, M., Whitten, G., 2005. Updates to the Carbon Bond Chemical Mechanism: CB05. US EPA, RT-0400675.
28.Zhou, S., Wang, Z., Gao, R., Xue, L., Yuan, C., Wang, T., Gao, X., Wang, X., Nie, W., Xu, Z., Zhang, Q., Wang W., 2012. Formation of secondary organic carbon and long-range transport of carbonaceous aerosols at Mount Heng in South China. Atmospheric Environment 63, 203-212.
29.Zhang, K. M., Knipping, E. M., Wexler, A. S., Bhave, P. V., Tonnesen, G. S., 2005. Sizedistribution of sea-salt emissions as a function of relative humidity. Atmos. Environ 39, 3373–3379.
30.張艮輝,林義儐,張育禎,“東亞地區生物源排放量模式之建立與推估”第廿二屆空氣污染控制技術研討會,中壢 (2005)。
31.蔡長祐,“境外長程傳輸對台灣細懸浮微粒及其組成分影響之模擬研究”,國立雲林科技大學,碩士論文 (2013)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔