(3.238.240.197) 您好!臺灣時間:2021/04/12 03:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:顏鵬軒
研究生(外文):Peng-Syuan Yan
論文名稱:大氣懸浮微粒化學組成連續監測系統建立與應用之研究
論文名稱(外文):Establish and Application Study of Continuous Monitoring System for Water-Soluble Species of Atmospheric Particle
指導教授:張艮輝張艮輝引用關係
指導教授(外文):Ken-hui Chang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全衛生工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:162
中文關鍵詞:銨鹽硝酸鹽硫酸鹽細懸浮微粒半自動監測
外文關鍵詞:SulfatePILSNitrateSemi-ContinuousPM2.5
相關次數:
  • 被引用被引用:0
  • 點閱點閱:622
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
監測方法日益演進,我國環保署空氣品質測站監測二次微粒之前驅物:硫酸鹽與硝酸鹽,現行採用閃火揮發脈衝分析之自動連續監測方法,近期部份研究之監測方法為 PILS-IC (液體採集顆粒結合離子層析法)。
因 PILS 之建制成本相對於R&;P 8400 N 、R&;P 8400 S 是較少的,且皆具有短時間解析及連續量測衍生性物種濃度之功能,故本研究嘗試建立PILS-IC 之監測方法與應用,本研究探討PM2.5 水溶性離子現址式採樣裝置 ( IN-SITU 029 ) 之連續自動監測方法建立與應用,與搭配Moudi濾紙換樣結果進行驗證其相關性與偏差結果,探討IN-SITU 029之效能。
本研究研究結果如下:
1. 整體而言與濾紙採樣結果相比,硫酸鹽低估結果約35.3%、硝酸鹽低估39.7%,銨鹽高估46.9%。
2. IN-SITU 029連續自動監測時明顯發現,鈉鹽偏高及離子平衡相對較不佳的狀況,除未使用氣固分離裝置( Denuder )及Collect Chamber 設計需進行改善之外,應還有許多問題仍未發現或仍需改善,如進行管線背景濃度之測試、量化管線收集與液滴收集效益、氣固分離裝置塗附條件控制等。
3. 本研究綜合相關文獻試推論其它實驗影響變因,如管路洗淨設計、PM2.5 高污染或其他氣狀污染物濃度較高的採樣環境等採樣情境,皆會影響IN-SITU 029 連續監測之結果。
4. 本研究呈現 PM2.5 主要組成物種之濃度、相關性與物種監測性能評估情形,而次要物種不在本研究討論的範圍,若其它物種之監測性能往後能改良優化,將可對環境整體污染物變遷做出更準確的即時監控。
本研究平行監測結果,硫酸鹽、硝酸鹽呈現低估現象,而銨鹽呈現高估情形,但IN-SITU 029 與濾紙採樣結果呈現相當良好之相關性,硫酸鹽之r值為:0.98 、硝酸鹽之r值為:0.99及銨鹽之r值是:0.93,IN-SITU 029 監測方法整體而言存在不錯的一致性,往後系統若能開發完全將可以與閃火揮發監測方法一起並行使用。
The evolution of monitoring methods , as long as 20 years ago, particulate sulfate was measured continuously using flame photometric detection of sulfur compounds in Taiwan’EPA. Recently, the other metod is the principal modification in this design is that collected liquid sample is delivered to vials held on a rotating carousel as opposed with ion chromatography to an online analytical detector.
The establishment costs due to PILS relative to R&;P 8400 N or R&;P 8400 S is less,and the need for highly time-resolved data on atmospheric aerosol composition has prompted the development of several semi-continuous techniques. This study attempts to establish PILS-IC and applications, we report on the results of intercomparison between a new PM2.5 semi-continuous sulphate and nitrate instrument ( IN-SITU 029 ) and filter-based technique( 4-Stages Moudi ). We show the correlation between the filter-based and the IN-SITU 029 also showed a large variation, with a Pearson correlation coefficient (r) and deviations from the filter data with observations’ data of IN-SITU 029.
The results of this study:
1. Overall, compared with the filter sampling results,Sulfate underestimate 35.3%、Nitrate underestimate 39.7% and Ammonium overestimated 46.9%.
2. IN-SITU 029 continuous monitoring is obviously found high sodium and ion balance is poor, In addition to gas-solid separation device (Denuder) is not used and Collect Chamber design must be improved. There are many problems remain to be discovered or needs to improve, such as background concentrations for the test pipeline, pipeline collection and quantification droplet collection efficiency, gas-solid separation equipment condition control.
3. In this study, using the relevant literature try inference other experimental variables of influence, such as pipe cleaning design, PM2.5 pollution or other high concentrations of gaseous pollutants higher sampling environmental sampling scenarios will influence the IN-SITU 029 continuous monitoring of the results.
4. This study presents the main species composition of PM2.5 concentrations, correlation and species monitoring performance evaluation situations. This study does not discuss minor species, if other species can improve the monitoring of future performance optimization, pollutants to the environment as a whole will be able to make more accurate real-time change monitoring.
Parallel monitoring results of this study, sulfates, nitrates present underestimated phenomenon, and ammonium salts present situation overestimated, but IN-SITU 029 with filter sampling results showed quite good correlation, the r-value of sulfate is 0.98, the r-value of nitrate is 0.99 and the r-value of ammonium is 0.93. IN-SITU 029 Overall, there is a good way to monitor the consistency, the subsequent development of the system completely if flash can be used in parallel with volatile monitoring methods.
中文摘要
ABSTRACT
誌謝
目錄
表目錄
圖目錄
第一章 前言
1.1 研究緣起
1.2 研究目的
第二章 文獻回顧
2.1 雲林縣地理位置與空氣污染物排放特性
2.2 懸浮微粒之定義、粒徑分布以及來源
2.2.1 懸浮微粒之來源
2.2.2 懸浮微粒之化學組成特性
2.3 我國現行細懸浮微粒( PM2.5 )硫酸鹽與硝酸鹽之自動監測
2.3.1 微粒硫酸鹽濃度監測儀 ( R&;P 8400 S )
2.3.2 微粒硝酸鹽濃度監測儀 ( R&;P 8400 N )
2.3.2 國外R&;P 8400 N及S之相關研究
2.4 目前應用PILS 監測PM2.5硫酸鹽與硝酸鹽之概述
2.4.1 濕式化學分析法概述
2.4.2 濕式化學分析法特性
2.5 IN-SITU 029連續自動監測系統與其QA/QC之概述
2.5.1 濕式同心圓管氣固分離器 (Wet Annular Denuder )操作原理
2.5.2 凝結微粒採樣器 ( Condensation Particle Collector )操作原理
2.5.3 IGAC之QA/QC結果
第三章 研究方法
3.1 符合IN-SITU 029連續自動監測硬體設備規劃
3.2 IN-SITU 029運轉前之系統設定檢查
3.3 IN-SITU 029運轉流程
3.4 Moudi 採樣實驗流程
3.4.1 Moudi 採樣原理概述
3.4.2 Moudi 多階採樣器之清洗
3.4.3 Moudi 採樣濾紙製備
3.4.4 Moudi 採樣之品保品管
3.5 IC 分析前處理
3.5.1 Moudi濾紙萃取過程
3.5.2 重金屬消化過程:
3.6 IC 分析之品保與品管
3.6.1 分析化合物檢量線製作
3.6.2 回收率 ( Recovery )
3.6.3 再現性 ( Reproducibility )
3.6.4 空白樣本分析 ( Blank )
3.6.5 方法偵測極限 ( Method Detection Limit, MDL )
第四章 結果與討論
4.1 本研究IN-SITU 029 監測方法建制過程概述
4.1.1 IN-SITU 029 使用特性發現與待改善之問題
4.1.2 IN-SITU 029監測結果特性
4.1.3 IN-SITU 029待改善之問題
4.2 斗六 PM2.5 之分佈特徵
4.3 本研究平行監測概述
4.4 Moudi採樣結果
4.4.1 Moudi 採樣結果之QA/QC
4.4.2懸浮微粒質量濃度秤重結果
4.4.3 Moudi水溶性物種分析結果
4.4.3.1 懸浮微粒硫酸鹽濃度分佈
4.4.3.2 懸浮微粒硝酸鹽濃度分佈
4.4.3.3 懸浮微粒銨鹽濃度分佈
4.4.3.4 懸浮其他物種濃度分佈
4.4.4 懸浮微粒組成物種比例分佈
4.5 IN-SITU 029水溶性離子監測過程概述
4.5.1 IN-SITU 029 監測結果之QA/QC
4.5.2 IN-SITU 029 硫酸鹽監測結果
4.5.3 IN-SITU 029 硝酸鹽監測結果
4.5.4 IN-SITU 029 銨鹽監測結果
4.5.5 IN-SITU 029 其他水溶性物種監測結果
4.6 斗六二次氣膠(SO42-、NO3-及NH4+)之分佈特徵
4.7 IN-SITU 029 與 Moudi 平行監測結果比較
4.7.1 主要無機鹽類(硫酸鹽、硝酸鹽及銨鹽)相關性比較
4.7.2 IN-SITU 029監測偏差綜合分析
4.7.2.1 硫酸鹽偏差之原因解析
4.7.2.2硝酸鹽偏差之原因解析
4.7.2.3銨鹽偏差之原因解析
4.8本研究與國外文獻結果比較
第五章 結論與建議
5.1結論:
5.2建議:
參考文獻
附錄A
附錄B
附錄C
附錄D
1.Allen, G.A., Harrison, D., Koutrakis, P., 2001.“A new method for continuous measurement of sulfate in the ambient atmosphere.American”, Association for Aerosol Research, 20th Annual Conference, October 15–19, Portland, Oregon.
2.Bernab’e, J. M., M. I. Carretero, and E. Gala’n, 2005, “Mineralogy and origin of atmospheric particles in the industrial area of Huelva (SW Spain)”, Atmospheric Environment, 39, 6777-6789.
3.Boring, C.B., Al-Horr, R., Genfa, Z., Dasgupta, P.K, 2002, “Field measurement of acidic gases and soluble anions in atmospheric particulate matter using a parallel plate wet denuder and an alternating filter-based automated analysis system”, Analytical Chemistry, 74, 1256–1268.
4.Benner, C.L., D.J. Eatough, N.L. Eatough and P. Bhardwaja. 1991. “Comparison of annular denuder system and filter pack collection of HNO3(g), HNO2(g) and particulate-phase nitrate, nitrite and sulfate in the south-west desert”, Atmospheric Environment Vol. 25A, p.p. 1537-1545
5.Chen, W. C., C. S. Wang, and C. C. Wei, 1997, “An Assessment of Source Contributions to Ambient Aerosols in Central Taiwan”, Journal of the Air and Waste Management Association, 47, 501-509.
6.Colbeck, I. and R. M. Harrison, 1984, “Ozone-Secondary Aerosol-Visibility Relationships in North-West England”, Science of the Total Environment, 34, 87-100.
7.Colbeck, I. and M. Lazaridis, 2010, “Aerosols and environmental pollution”, Naturwissenschaften, 97, 117-131.
8.Douglas A. Orsini, Yilin Ma, Amy Sullivan, Berko Sierau, Karsten Baumann, Rodney J. Weber, 2003, “Refinements to the particle-into-liquid sampler (PILS) for ground and airborne measurements of water soluble aerosol composition”, Aerosol Science and Technology., Vol. 37, p.p. 1243-1259.
9.Drewnick F, Schwab JJ, Hogrefe O, Peters S, Husain L, Diamond D, Weber R, Demerjian KL., 2003. “Intercomparison and Evaluation of Four Semi-Continuous PM2.5 Sulfate Instruments”, Atmos Environ. Vol. 37, p.p. 3335–3350.
10.Eldering, A., and G. R. Cass, 1996, “Source-oriented model for air pollutant effects on visibility”, Journal of Geophysical Research, 101, (D14). doi: 10.1029/95JD02928.
11.FEM O''brien., 1948, “The Control of Humidity by Saturated Salt Solutions”, Journal of Scientific Instruments.
12.Fountoukis, C., A. Nenes, A. Sullivan, R. Weber, T. Vanreken, M. Fischer, E. Matias, M. Moya, D. Farmer, and R.C. Cohen, 2009, “Thermodynamic characterization of Mexico City aerosol during MILAGRO 2006”, Atmospheric Chemistry and Physics., Vol. 9, p.p. 2141-2156.
13.Friendlander, S. K., 1973, “Chemical element balance and identification of air pollution sources”, Environment Science and Technology, 7, 235-240.
14.Helle’n, H., H. Hakola, and T. Laurila, 2003, “Determination of source contributions of NMHCs in Helsinki (601N,251E) using chemical mass balance and the Unmix multivariate receptor models”, Atmospheric Environment, 37,1413-1414.
15.Henry, R.C., 1987, “Current factor analysis receptor models are ill-posed”, Atmospheric Environment, 21, 1815-1820.
16.Henry, R. C., Y. S. Chang, and C. H. Spiegelman, 2002, “Locating nearby sources of air pollution by nonparametric regression of atmospheric concentrations on wind direction”, Atmospheric Environment, 36, 2237-2244.
17.Harrison, D., Park, S.S., Ondov, J., Buckley, T., Kim, S.R., Jayanty, R.K.M. 2004. “Highly time resolved fine particle nitrate measurements at the Baltimore Supersite”,Atmospheric Environment Vol. 38, p.p. 5321–5332
18.I. Trebs, M.O. Andrae, W. Elbert, O. Mayol-Bracero, L. Soto-Garcia, Y. Rudich, A.H. Falkovich, 2008, “Aerosol inorganic composition at a tropical site: discrepancies between filter-based sampling and a semi-continuous method”, Aerosol Science and Technology., Vol. 42, p.p. 255-269.
19.Jinhong Zhu, Xin-Zhong Liang., 2013.“Impacts of the Bermuda High on Regional Climate and Ozone over the United States”.Journal of Climate 26:3, 1018-1032
20.Khlystov, A., Wyers, G.P., Slanina, J., 1995, “The steam-jet aerosol collector”, Atmospheric Environment., Vol. 29, p.p. 2229-2234.
21.Lee, T.&; Yu, X.-Y.&; Kreidenweis, S.M.&; Calm, W.C. 2008, “Semi-continuous measurement of PM2.5 ionic composition at several rural locations in the United States”,Atmospheric Environment Vol. 42, p.p. 6655-6669
22.Lee, H.S., R.A. Wadden and P.A. Scheff. 1993. “Measurement and evaluation of acid air pollutants in Chicago using an annular denuder system”, Atmospheric Environment Vol. 27A, p.p. 543-553
23.Lee B K, Kim Y H, Lee D S. 2008. “An automated and semi-continuous method for the analysis of water-soluble constituents in PM2.5”, Science of The Total Environment. Vol. 393(1) , p.p. 145-153
24.Lin, J. J., 2002, “Characterization of water-soluble ion species in urban ambient particles”, Environment International, 28, 55-61.
25.Matsumoto, M. and T. Okita. 1998. “Long term measurements of atmospheric gaseous and aerosol species using an annular denuder system in Nara,Japan”, Atmospheric Environment Vol. 32, p.p. 1419-1425
26.Qin, Y., and K. Oduyemi, 2003, “Chemical Composition of atmospheric aerosol in Dundee, UK”, Atmospheric Environment, 37, 93-104.
27.Qin, Y., and L.Y. Vhan, 1993, “Traffic Source Emission and Street Level Air Pollution in Urban Areas of Guangzhou South China”, Atmospheric Environment, 27, 275-282.
28.Querol, X., A. Alastuey, M. M. Viana, S. Rodriguez, B. Artinano, P. Salvador, S. G. D. Santos, R. F. Patier, C. R. Ruiz, J. D. L. Rosa, A. S. D. L. Campa, M. Menedez, and J. I. Gil, 2004, “Speciation and origin of PM10 and PM2.5 in Spain”, Journal of Aerosol Science, 35, 1151-1172.
29.Rattigan, O.V., Hogrefe, O., Felton, H.D., Schwab, J.J., Roychowdhury, U.K., Husain, L., Dutkiewicz, V.A., Demerjian, K.L., 2006.“Multi-year urban and rural semi-continuous PM2.5 sulfate and nitrate measurements in New York state: Evaluation and comparison with filter based measurements”, Atmospheric Environment 40, S192~S205.
30.Sorooshian, A., Varutbangkul, V., Brechtel, F. J., Ervens, B., Feingold, G., Bahreini, R., Murphy, S. M., Holloway, J. S., Atlas, E. L., Buzorius, G., Jonsson, H., Flagan, R. C., and Seinfeld, J. H. (in press, 2006) “Oxalic Acid in Clear and Cloudy Atmospheres: Analysis of Data from ICARTT”, J. Geophys. Res.
31.Saarikoski, S.; Sillanpa, M.; Sofiev, M.; Timonen, H.; Saarnio, K.; Teinila, K.; Karppinen, A.; Kukkonen, J.; Hillamo, R. 2007. “Chemical composition of aerosols during a major biomass burning episode over northern Europe in Spring 2006: Experimental and modeling assessments”,Atmos Environ. Vol. 41, p.p. 3577–3589.
32.Seinfeld, J. H., and S. N. Pandis, 1998, “Atmospheric Chemistry and Physics.”Wiley, New York.
33.Simon, P.K., Dasgupta, P.K, 1995, “Continuous automated measurement of the soluble fraction of atmospheric particulate matter”, Analytical Chemistry, 67, 71-78.
34.Shimohara, T.&; Osih, O.&; Utsunomiya, A.&; Mukai, H.&; Hatakeyama, S.&; Eun-Suk, J. et al., “Characterization of atmospheric air pollutants at two sites in northern Kyushu, Japan — chemical form, and chemical reaction”, Atmos Environ, vol. 35, 2001, p.667-681.
35.Shon, Z.H., Kim, K.H., Song, S.K., Jung, K., Kim, N.J., Lee, J.B., 2012. “Relationship between water–soluble ions in PM2.5 and their precursor gases in Seoul mega city”. Atmospheric Environment 59, 540–550.
36.Slanina, J., Brink, H.M.t., Otjes, R.P., Even, A., Jongejan, P., Khlystov, A., Waijers-Ijpelaan, A., Hu, M., Lu, Y, 2001, “The continuous analysis of nitrate and ammonium in aerosols by the steam jet aerosol collector (SJAC): extension and validation of the methodology”, Atmospheric Environment, 35, 2319–2330.
37.Stolzenburg, M.R., Hering, V, 2000, “A method for the automated measurement of fine particle nitrate in the atmosphere”, Environmental Science and Technology, 34, 907–914.
38.Tang, I. N., Munkelwitz, H. R., 1993, “Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols”, Atmos. Environ., Vol. 27A, p.p.467-473.
39.Tsai, J. H., Y. C. Hsu, H. C. Weng, W. Y. Lin, and F. T. Jeng, 2000, “Air pollutant emission factors from new and in-use motorcycles”, Atmospheric Environment, 34, 4747-4754.
40.Weber, R.J., Orsini, D., Daun, Y., Lee, Y.-N., Klotz, P., Brechtel, 2001, “A particle-into-liquid collector for rapid measurements of aerosol chemical composition”, Aerosol Science Technology, Vol. 35, p.p.718-727
41.Weber, R.J., Orsini, D., Duan, Y., Baumann, K., Kiang, C.S., Chameides, W., Lee, Y.L., Brechtel, F., Klotz, P., Jongejan, P., Brink, H.t., Slanina, J., Dasgukpta, P., Hering, S., Stlozenburg, M., Edgerton, E., Hartsell, B., Solomon, P., Tanner, R. 2003b, “Intercomparison of near real-time monitors of PM2.5 nitrate and sulfate at the EPA Atlanta supersite”, Geophysical Research., Vol. 1080 (D7), p.p. 10.1029/2001JD001220.
42.USEPA, 1999, “A revised user’s guide to MESOPUFF II (V5.1)”, EPA 454/B-94-025, US Environment protection Agency, Research Triangle Park, NC.
43.U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Emissions, Modeling, and Analysis Division, Monitoring and Quality Assurance Group. (1999). Particulate Matter (PM2.5) Speciation Guidance, Final Draft, Edition 1, October 1999 (NC 27711). U.S. Environmental Protection Agency: Author.
44.Vega E., V. Mugica, R. Carmona, and E. Valencia, 2000, “Hydrocarbon source apportionment in Mexico City using the chemical mass balance receptor model”, Atmospheric Environment, 34, 4121-4129.
45.Wang, C. F., C. Y. Chang, S. F. Tsai and H. L. Chiang, 2005, “Characteristics of road dust from different sampling sites in Northern Taiwan”, Journal of the Air &; Waste Management Association, 55, 1236-1244.
46.Wang, C. F., P. C. Chiang, M. T. Chang, and H. L. Chiang, 2007, “Improvement of Receptor Model Use in Analytical Aspect”, Atmospheric Environment, 41, 9146-9158.
47.Weber, R.J., Orsini, D., Duan, Y., Baumann, K., Kiang, C.S., Chameides, W., Lee, Y.L., Brechtel, F., Klotz, P., Jongejan, P., Brink, H.t., Slanina, J., Dasgukpta, P., Hering, S., Stlozenburg, M., Edgerton, E., Hartsell, B., Solomon, P., Tanner, R., 2003b, 2008, “Intercomparison of near real-time monitors of PM2.5 nitrate and sulfate at the EPA Atlanta supersite”, Geophysical Research., 1080 (D7), 10.1029/2001JD001220.
48.Wang Z.S., Wu, Ting., Shi, G.L., Fu, X., Tian, Y., Feng, Y.C., Wu, X.F., Wu, G., Bai, X.P. and Zhang, W.J., 2012.“Potential Source Analysis for PM10 and PM2.5 in Autumn in a Northern City in China”.Aerosol Air Qual. Res. 12: 39–48.
49.Wittig, A.E., Takahama, S., Khlystov, A.Y., Pandis, S.N., Hering, S., Kirby, B., Davidson, C, 2004. “Semi-continuous PM2.5 inorganic composition measurements during the Pittsburgh Air Quality Study”, Atmospheric Environment Vol. 34, p.p. 3201–3213
50.Wu, W. S. and Wang, T. 2007. “On the performance of a semi-continuous PM2.5 soleplate and nitrate instrument under high loadings of particulate and sculpture dioxide”, Atmos. Environ. Vol. 41, p.p. 5442–5451
51.王秋森,陳志傑,1999,“臭氧及PM1/PM2.5/PM10大氣懸微粒之暴露及健康風險評估”,行政院國家科學委員會專題研究計畫,NSC 88-2621-Z-002-011。
52.江宜展,2007,“以熱力學模式應用於超級測站硝酸氣體推估”,國立成功大學碩士論文。
53.李家青,2002,“潮州地區大氣懸浮微粒(PM1/PM2.5/PM10)成份特性之探討”,國立屏東科技大學環境工程與科學所碩士論文。
54.李崇德、周崇光、許文昌,1992,“台北都會區懸浮微粒粒徑分佈的物理化學特性 (II)”,行政院國家科學委員會專題研究計畫,國科會研究報告,NSC81-0421-E008-10-Z。
55.倪佩貞、唐文聰、呂佩貞、楊玉妃、蔡國聖、郭明哲、魏憶琳、劉盈利,2007,“空氣污染物排放清冊更新管理及空氣品質損量推估計畫(第二年)”,行政院環境保護署計畫,EPA-95-FA11-03-D067。。
56.袁中新,1998,“南高屏地區空氣品質總量管制研究-子計畫 B5:大氣中 PM2.5 及 PM10 特徵成分濃度時空分布觀測研究”,行政院環境保護署研究報告,EPA-87-FA42-03-F5。
57.袁景嵩,1997,“台灣南部地區PM2.5及PM10懸浮微粒濃度及物化特性之時空變化”,國立中山大學碩士論文。
58.高橋幹二,1989,“氣溶膠工學應用篇”,高正雄譯,初版,復漢出版社,台南巿,頁42-50。
59.邱嘉斌,2005,“台灣中部都會與沿海地區PM2.5及PM2.5-10氣膠化學組成及污染源貢獻量之研究”,國立中興大學環境工程學系所博士論文。
60.莊鳳宸,2009,六輕工業區附近地區懸浮微粒來源之受體模式分析,國立雲林科技大學,環境與安全衛生研究所碩士論文。
61.雲林縣環境保護局,2007,“雲林縣九十六年度離島工業區空氣污染監測、檢測許可查核與總量管制計畫”,台灣曼寧工程顧問股份有限公司。
62.雲林縣環境保護局,2008a,“九十七年度離島工業區空氣污染監測、檢測許可查核與總量管制計畫”,台灣曼寧工程顧問股份有限公司。
63.雲林縣環境保護局,2008b,“九十五年度離島工業區即時環境監測及預警系統建置計畫”,祥威環境科技有限公司。
64.鄭曼婷、王竹方、蔣勝吉、林煜棋、賴宏志、蔡素芬,1998c,“台中市道路揚塵特性及減量評估”,台中市環保局。
65.鄭曼婷、林煜棋、蔡明杰、許世傑、周崇光、劉紹臣,2003,“2002年大陸沙塵事件日灣中部氣膠物理化學特性”,2003年氣膠科技研討會。
66.鄭曼婷、邱嘉斌、楊宏隆、陳紀綸,1998b,“沿海地區大氣懸浮微粒污染來源分析”,第十五屆空氣污染控制技術研討會論文集,頁733-740。
67.交通部統計查詢網,2010。網站:http://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100
68.行政院環境保護署,2010,台灣空氣污染排放清冊資料庫,TEDS7.0版。
69.蔡長佑,2013,“境外長程傳輸對台灣細懸浮微粒及其組成份影響之模擬研究”,國立雲林科技大學環安所碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔