(3.215.183.251) 您好!臺灣時間:2021/04/22 21:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李世禾
研究生(外文):Shih-Ho Lee
論文名稱:功能性羧甲基幾丁聚醣修飾性電極於葡萄糖生物感測器之應用
論文名稱(外文):A glucose biosensor based on the functionalzed CMCS modified electrode
指導教授:陳文章陳文章引用關係
指導教授(外文):Wen-Chang Chen
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:83
中文關鍵詞:羧甲基幾丁聚醣葡萄糖生物感測器氧化降解法
外文關鍵詞:oxidative degradationglucose biosensorCarboxymethyl chitosan
相關次數:
  • 被引用被引用:2
  • 點閱點閱:121
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究欲利用羧甲基幾丁聚醣 (CMCS) 之生物相容性、親水、穩定無毒、具兩性官能等優點,改善網印電極 (screen-printed electrode, SPE) 電化學特性;先於鹼性下將幾丁聚醣 (chitosan, CS) 改質為具水溶性之 CMCS, 並進一步將其修飾在SPE 上,以赤血鹽當作電子傳遞介質,再滴覆上葡萄糖氧化酶 (GOD),製成低廉、方便攜帶的可棄式葡萄糖感測器。經由材料鑑定與特性分析確認了 CMCS 上之羧甲基,同時,亦利用循環伏安、計時安培、交流阻抗分析等電化學方法進行修飾性 SPE 之電化學特性探討。結果顯示修飾性 SPE 不僅可降低電子傳遞阻抗,且其電化學特性亦較未修飾 SPE 為佳;在結合 GOD 後,對於葡萄糖之催化電流亦有提升之效果,且經由電子傳遞動力學之解析,知其屬典型的表面擴散控制。然後經由最適化條件之探討,CMCS 修飾性 SPE 最適工作電位:0.35 V;最適酵素覆載量:0.8 U;最適 pH:7。但在建立葡萄糖檢量線的同時,發現 CMCS 修飾性 SPE 的靈敏度不佳,探討結果發現 CMCS 的分子量大、黏度高且流動性不佳,造成阻礙,於是用氧化降解法將CMCS 降解成低分子量CMCS (LM-CMCS),而實驗結果也顯示 LM-CMCS 更助於 Ferri 在電極表面的分散,提升電活性面積,而感測靈敏度達到 0.443 贡A/mM,較修飾前提升了約 25 %。
This study is to synthesize functionalized carboxymethyl chitosan (CMCS) by
carboxylation reaction of chitosan (CS), to modify screen-printed electrode (SPE) for preparing an inexpensive, convenient and disposable glucose biosensor with glucose oxidase and ferricyanide (as a mediator). It is supposed that the electrochemical properties of SPE may be improved by utilizing the characteristic, biocompatible, hydrophilic, non-toxic and amphoteric functional groups of CMCS. The carboxymethyl group on CMCS was firstly confirmed via various identifying and characterizing analyses of the material. And then the electrochemical behaviors of various modified SPEs were investigated by CV and EIS. Results show that the CMCS-modified SPE demonstrates not only better electrochemical characteristics but a significant
enhancement of catalytic current for glucose. Moreover, the electrochemical behavior of the modified SPE belongs to diffusion-control kinetics. The optimal operation conditions of glucose biosensor, such as working potential, enzyme loading, and pH were 0.35V, 0.8U and pH 7, respectively. However, the biosensor showed a wider linearity, but a lower sensitivity, than the bare SPE. Because of using a high-molecular-weight CMCS solution, there might be an electron transfer barrier between GOD and the mediator, due to its high viscosity and poor mobility. Therefore, a low-molecular-weight CMCS was prepared from oxidative degradation by H2O2 and was used for modifying SPE and the sensitivity of the resulting biosensor for glucose was ca. 0.443 μA/mM with a wide linearity up to ~33 mM and the lower detection limit
of about 3.2 mg/dl.
中文摘要 ........................................................................................................................... I
Abstract ............................................................................................................................. II
圖目錄 .............................................................................................................................. V
表目錄 ............................................................................................................................ VI
第一章 緒論 .................................................................................................................... 1
第二章 研究背景與文獻回顧 ........................................................................................ 3
2.1 生物感測器 ...................................................................................................... 3
2.1.1生物感測器的種類 .............................................................................. 4
2.2葡萄糖生物感測器 ........................................................................................... 5
2.2.1第一代葡萄糖生物感測器 .................................................................. 5
2.2.2第二代葡萄糖生物感測器 .................................................................. 7
2.3 網印電極(screen-printed electrode, SPE) ........................................................ 8
2.3.1 SPE 葡萄糖生物感測器電極材料之修飾 ........................................... 9
2.4 生物高分子於感測方面之應用 .................................................................... 11
2.5 幾丁聚醣與羧甲基幾丁聚醣 ........................................................................ 15
2.5.1 幾丁聚醣介紹與各領域之應用 ....................................................... 15
2.5.2 幾丁聚醣感測領域之應用 ............................................................... 18
2.5.3 幾丁聚醣衍生物 ─ 羧甲基幾丁聚醣 ........................................... 21
第三章 電化學分析方法 .............................................................................................. 26
3.1 電化學阻抗頻譜分析技術 (EIS) ................................................................. 26
3.2 循環伏安法 (CV) .......................................................................................... 28
3.3計時安培法 (CA) ........................................................................................... 33
3.4計時電位法 (CP) ........................................................................................... 34
第四章 材料與實驗方法 .............................................................................................. 37
4.1藥品與材料 ..................................................................................................... 37
4.2儀器 ................................................................................................................. 38
4.3網印電極 Screen printed electrode (SPE)結構圖 ......................................... 39
4.4 實驗架構 ........................................................................................................ 40
4.5 實驗步驟 ........................................................................................................ 41
4.5.1 實驗溶液配置 ................................................................................... 41
4.5.2 羧甲基幾丁聚醣 (CMCS) 之製備 .................................................. 42

4.5.3 傅立葉轉換紅外線光譜儀 (FTIR) .................................................. 43
4.5.4 X光繞射分析儀 (XRD) ................................................................... 43
4.5.5 CMCS 修飾性 SPE 電化學特性之最適添加量探討 .................... 43
4.5.6 CMCS 修飾性 SPE 電化學特性之催化特性探討 ........................ 43
4.5.7 CMCS 修飾性 SPE之動力學參數探討 ......................................... 44
4.5.8 葡萄糖生物感測器最適化工作電位探討 ....................................... 44
4.5.9 葡萄糖生物感測器最適化酵素覆載量探討 ................................... 44
4.5.10 葡萄糖生物感測器最適化 pH探討 ............................................... 44
4.5.11 葡萄糖生物感測器檢量線之建立 ................................................. 45
4.5.12 葡萄糖生物感測器干擾物之影響 ................................................. 45
4.5.13 葡萄糖生物感測器之真實樣品 ..................................................... 45
第五章 結果與討論 ...................................................................................................... 46
5.1 材料鑑定 ........................................................................................................ 46
5.1.1 傅立葉轉換式光譜分析 (FTIR) ...................................................... 46
5.1.2 X-光繞射分析儀 (XRD) ................................................................... 47
5.2 CMCS 修飾性 SPE 電化學特性探討 ......................................................... 47
5.2.1 CMCS 最適添加濃度 ........................................................................ 47
5.2.2 CMCS 催化電流;是否能直接電子傳遞 ....................................... 49
5.2.3 CMCS 動力學參數探討 ................................................................... 50
5.3 感測最適操作條件探討與檢量線建立 ........................................................ 53
5.3.1 感測最適化操作電位探討 ............................................................... 53
5.3.2 感測最適化酵素覆載量探討 ........................................................... 54
5.3.3 感測最適化 pH 探討 ....................................................................... 54
5.3.4 CMCS 修飾性 SPE 葡萄糖檢量線之建立 ................................. 55
5.3.5 修飾性電極之表面形態探討 ........................................................... 58
5.4 感測干擾物之影響 ........................................................................................ 62
5.5真實樣品之檢測 ............................................................................................. 63
第六章、結論 ................................................................................................................ 64
參考文獻 ........................................................................................................................ 65
1. Cass AEG, 1989, Biosensor: A Practical Approach, p.19.
2. Clark LC, Lyons C, 1962, Ann. N. Y. Acad. Sci. 102:29-45.
3. Hofrichter M. and Steinbuchel A., (2004),生物高分子,郭聖榮譯
4. 王璽傑, 2008, 平面式抗壞血酸微電極感測器之製備, 國立雲林科技大學光電工
程系碩士論文, pp.3
5. Belluzo M S, M E Ribone, and C M Lagier (2008) Assembling amperometric
biosensors for clinical diagnostics. Sensors 8: 1366-1399.
6. Noci SD, Frasconi M, Favero G,Tosi M, Ferri T, and Mazzei F (2008)
Electrochemical kinetic characterization of redox mediated glucose oxidase reactions: A
simplified approach. Electroanalysis 20:163-169.
7. Loechel C., Chemnitius G.C., Borchardt M., Cammann K., (1998), Amperometric
bi-enzyme based biosensor for the determination of lactose with an extended linear
range, Z Lebensm Unters Forsch A, 207 :381–385.
8. S. Marino, G. Minervini, M.R. Montereali, C. Cremisini, A.Masci, and R. Pilloton, “Screen Printing” for chemical sensor and biosensor production, II° WORKSHOP ON CHEMICAL SENSORS AND BIOSENSORS, p2
9. Gilmartin, (1995), Sensing with Chemically and Biologically Modified Carbon
Electrodes, Analyst, 120, 1029-1045.
10. Galval-Vidal CA, Munoz J, Dominguez C, Alegret S, 1995, TrAC 14:225-231. 66
11. Ricci F., Amine A., Tuta C.S., Ciucu A.A., Lucarelli F., Palleschi G., Moscone D., (2003), Prussian Blue and enzyme bulk-modified screen-printed electrodes for hydrogen peroxide and glucose determination with improved storage and operational stability, Analytica Chimica Acta 485, 111–120.
12. Liaoa M.H., Guob J.C., Chen W.C., ,(2006), A disposable amperometric ethanol biosensor based on screen-printed carbon electrodes mediated with
ferricyanide-magnetic nanoparticle mixture, Journal of Magnetism and Magnetic
Materials 304, e421–e423.
13. Takeshi S., Touru S., Masatoshi O., Tetsuji I., Taka-aki H., (2012), Amperometric l-lactate biosensor based on screen-printed carbon electrode containing cobalt phthalocyanine, coated with lactate oxidase-mesoporous silica conjugate layer, Analytica Chimica Acta 714, 114–120.
14. Prasad K.S., Chen J.-C., Ay C., Zen J.-M., (2007), Mediatorless catalytic oxidation of NADH at a disposable electrochemical sensor, Sensors and Actuators B 123, 715–719
15. Lu D., Belle J.L., Ninivin C.L., Mabic S., Dimitrakopoulos T., (2010), n situ electrochemical detection of trace metal vapors at bismuth doped carbon screen printed electrodes, Journal of Electroanalytical Chemistry 642, 157–159.
16. Miserere S., Ledru S., Ruille N., Griveau S., Boujtita M., Bedioui F., (2006), iocompatible carbon-based screen-printed electrodes for the electrochemical detection of nitric oxide, Electrochemistry Communications 8, 238–244. 67
17. Ping J., Wu J., Wang Y., Ying Y., (2012), Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode, Biosensors and Bioelectronics 34, 70–76.
18. Dou1 J., Fan F., Ding A., Cheng L., Sekar R., Wang H., Li S., (2012) screen-printed, amperometric biosensor for the determination of organophosphorus pesticides in water samples, Journal of Environmental Sciences, 24(5) 956–962.
19. Liang and Mu, (2006), Flow-injection immuno-bioassay for interleukin-6 in humans based on gold nanoparticles modified screen-printed graphite electrodes, Analytica Chimica Acta 580 , 128–135.
20. Chen S.Z, Cao Q., Peng F.Y., Huang X.X., Jia Y.L., (2012), Screen-Printed
Electrochemical Biosensor for Detection of DNA Hybridization, Chin J Anal Chem, 2012, 40(8), 1194–1200.
21. Ricci F., Amine A., Tuta C.S., Ciucu A.A., Lucarelli F., Palleschi G., Moscone D., (2003), Prussian Blue and enzyme bulk-modified screen-printed electrodes for hydrogen peroxide and glucose determination with improved storage and operational stability, Analytica Chimica Acta 485, 111–120.
22. Crouch E., Cowell D.C., Hoskins S., Pittson R.W., Hart J.P., (2005), A no
disposable, screen-printed amperometric biosensor for glucose in serum fabricated using
a water-based carbon ink, Biosensors and Bioelectronics 21, 712–718.
23. Gao Z., Xie F., Shariff M., Arshad M., Ying J.Y., (2005), A disposable glucose biosensor based on diffusional mediator dispersed in nanoparticulate membrane on screen-printed carbon electrode, Sensors and Actuators B 111–112, 339–346 68
24. Miscoria S.A., Barrera G.D., Rivas G.A., (2006), Glucose biosensors based on the immobilization of glucose oxidase and polytyramine on rodhinized glassy carbon and screen printed electrodes, Sensors and Actuators B 115, 205–211.
25. Naruhide S. and Hirokazu O., (2008), Development of single-wall carbon nanotubes modified screen-printed electrode using a ferrocene-modified cationic surfactant for amperometric glucose biosensor applications, Sensors and Actuators B 129 188–194.
26. Yang T.H., Hung C.L., Ke J.H., Zen J.M., (2008), An electrochemically
preanodized screen-printed carbon electrode for achieving direct electron transfer to glucose oxidase, Electrochemistry Communications 10, 1094–1097.
27. Piano M., Serban S., Biddle N., Pittson R. , Drago G.A., Hart J.P., (2010), A flow injection system, comprising a biosensor based on a screen-printed carbon electrode containing Meldola’s Blue–Reinecke salt coated with glucose dehydrogenase, for the measurement of glucose, Analytical Biochemistry 396,269–274.
28. Gao Q., Guoa Y, Zhanga W., Qi H., Zhang C., (2011), n amperometric glucose
biosensor based on layer-by-layer GOx-SWCNT conjugate/redox polymer multilayer
on a screen-printed carbon electrode, Sensors and Actuators B 153, 219–225.
29. Kumar B., Castro M., Feller J.F., (2012), Poly(lactic acid)–multi-wall carbon nanotube conductive biopolymer nanocomposite vapour sensors, Sensors and Actuators B 161 621– 628.
30. Wael K.D., Bashir Q., Vlierberghe S.V., Dubruel P., Heering H.K., Adriaens A., (2012), Electrochemical determination of hydrogen peroxide with cytochrome c 69 peroxidase and horse heart cytochrome c entrapped in a gelatin hydrogel,
Bioelectrochemistry 83, 15–18.
31. Periasamy A.P., Chang Y.J., Chen S.M., (2011), Amperometric glucose sensor
based on glucose oxidase immobilized on gelatin-multiwalled carbon nanotube modified glassy carbon electrode, Bioelectrochemistry 80, 114–120.
32. Zhang Y., Zheng J., (2008), Direct electrochemistry and electrocatalysis of
myoglobin immobilized in hyaluronic acid and room temperature ionic liquids
composite film, Electrochemistry Communications 10, 1400–1403.
33. Luo X., Killard A.J., Smyth M.R., (2006), Reagentless Glucose Biosensor Based on the Direct Electrochemistry of Glucose Oxidase on Carbon Nanotube-Modified Electrodes, Electroanalysis 18 No. 11, 1131–1134.
34. Zong S., Cao Y., Zhou Y., Ju H., (2007), ydrogen peroxide biosensor based on hemoglobin modified zirconia nanoparticles-grafted collagen matrix, Analytica Chimica Acta 582, 361–366.
35. Abu-Rabeaha K., Marks R.S., (2009), Impedance study of the hybrid molecule
alginate–pyrrole: Demonstration as host matrix for the construction of a highly sensitive amperometric glucose biosensor, Sensors and Actuators B 136, 516–522.
36. Yu A.M. amd Chen H.Y., (1997), Electrocatalytic oxidation and determination of ascorbic acid at poly(glutamic acid) chemically modified electrode, Analytica Chimica Acta 344, 181-185. 70
37. Santos D.P., Bergamini M.F., Zanoni M.V.B., (2008), Voltammetric sensor for
amoxicillin determination in human urine using polyglutamic acid/glutaraldehyde film, Sensors and Actuators B 133, 398–403.
38. Bui M.P.N., Li C.A., Han K.N., Pham X.H., Seong G.H., (2012), Determination of acetaminophen by electrochemical co-deposition of glutamic acid and gold nanoparticles, Sensors and Actuators B 174, 318–324.
39. Khaled E., Hassan H.N.A., Habib I.H.I. and Metelka R., (2010), Chitosan Modified Screen-Printed Carbon Electrode for Sensitive Analysis of Heavy Metals, Int. J. Electrochem. Sci., 5, 158 – 167.
40. Khan R., Kaushik A., Solanki P.R., Ansari A.A., Pandey M.K., Malhotra B.D.,
(2010), Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor, analytica chimica acta 616, 207–213.
41. Odaci D., Timur S., Telefoncu A., (2008), Bacterial sensors based on chitosan matrices, Sensors and Actuators B 134, 89–94.
42. Chen L.H., Chan C.C., Yuan W., Goh S.K., Sun J., (2010), High performance
chitosan diaphragm-based fiber-optic acoustic sensor, Sensors and Actuators A 163,42–47.
43. Chen L.H., Li T., Chan C.C., Menon R., Balamurali P., Shaillender M., Neu B., Ang X.M., Zu P., Wong W.C., Leong K.C., (2012), Chitosan based fiber-optic Fabry–Perot humidity sensor, Sensors and Actuators B xxx, xxx–xxx. 71
44. Njagi j.,. Erlichman J.S., Aston J.W., Leiter J.C., Andreescu S., (2010), A sensitive electrochemical sensor based on chitosan and electropolymerized Meldola blue for monitoring NO in brain slices, Sensors and Actuators B 143, 673–680.
45. Nasution T.I., Nainggolan I., Hutagalung S.D., Ahmad K.R, Ahmad Z.A., (2010), The sensing mechanism and detection of low concentration acetone using
chitosan-based sensors, Sensors and Actuators B: Chemical 1-27.
46. Wang G., Xu J.J., Ye L.H., Zhu J.J., Chen H.Y., (2002), Highly sensitive sensors based on the immobilization of tyrosinase in chitosan,Bioelectrochemistry 57, 33– 38.
47. Zhao C., Meng Y., Shao C., Wan L., Jiao K., (2007), Unadulterated Glucose
Biosensor Based on Direct Electron Transfer of Glucose Oxidase Encapsulated
Chitosan Modified Glassy Carbon Electrode, Electroanalysis 20 No. 5, 520 – 526.
48. Zhao C., Meng Y., Shao C., Wan L., Jiao K., (2007), Unadulterated Glucose
Biosensor Based on Direct Electron Transfer of Glucose Oxidase Encapsulated
Chitosan Modified Glassy Carbon Electrode, Electroanalysis 20 No. 5, 520 – 526.
49. Yang M., Yang Y., Liu B., Shen G., Yu R., (2004), Amperometric glucose
biosensor based on chitosan with improved selectivity and stability, Sensors and
Actuators B 101, 269–276.
50. Yang Y., Yang H., Yang M., liu Y., Shen G., Yu R., (2004), Amperometric glucose
biosensor based on a surface treated nanoporous ZrO2/Chitosan composite film as
immobilization matrix, Analytica Chimica Acta 525, 213–220. 72
51. Lin J., He C., Zhao Y., Zhang S., (2009), One-step synthesis of silver
nanoparticles/carbon nanotubes/chitosan film and its application in glucose biosensor, Sensors and Actuators B 137, 768–773.
52. Wu B.Y., Hou S.H., Yin F., Li J., Zhao Z.X., Huang J.D., Chen Q., (2007),
Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrode, Biosensors and Bioelectronics 22, 838–844.
53. Yavuza A.G., Uyguna A.,. Bhethanabotla B.R., (2010), Preparation of substituted polyaniline/chitosan composites by in situ electropolymerization and their application to glucose sensing, Carbohydrate Polymers 81, 712–719.
54. Fang Y., Ni Y., Zhang G., Mao C., Huang X., Shen J., (2012), Biocompatibility of CS–PPy nanocomposites and their application to glucose biosensor, Bioelectrochemistry 88, 1–7.
55. Wang Y., Yuan R., Chaia Y., Li W., Zhuo Y., Yuan Y., Li Y., (2011), Direct
electron transfer: Electrochemical glucose biosensor based on hollow Pt nanosphere functionalized multiwall carbon nanotubes, Journal of Molecular Catalysis B: Enzymatic 71, 146–151.
56. Heras A., Rodri′guez N.M., Ramos V.M., Agullo′ E., (2001), N-methylene
phosphonic chitosan: a novel soluble derivative. Carbohydrate Polymers 44, 1–8.
57. Kato Y., Onishi H., Machida Y., (2004), N-succinyl-chitosan as a drug
carrier:water-insoluble and water-soluble conjugates, Biomaterials 25, 907–915. 73
58. Jayakumar R,, New N., Tokura S., Tamura H., (2007), Sulfated chitin and chitosan as novel biomaterials, International Journal of Biological Macromolecules 40, 175–181.
59. Rabea E.I., Badawy M.E.I.,Steurbaut W., Stevens C.V., (2009), In vitro assessment of N-(benzyl)chitosan derivatives against some plant pathogenic bacteria and fungi, European Polymer Journal 45, 237–245.
60. Ge B., Tan Y., Xie Q., Ma M., Yao S. (2009), Preparation of chitosan–dopamine- multiwalled carbon nanotubes nanocomposite for electrocatalytic oxidation and sensitive electroanalysis of NADH, Sensors and Actuators B 137, 547–554.
61. Jayakumar R., Prabaharan M., Nair S.V.,Tokura S.,Tamura H.,Selvamurugan N.,
(2010), Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications, Progress in Materials Science 55, 675–709.
62. Chaleawlert-umpon S., Nuchuchua O., Saesoo S., Gonil P., (2011), Effect of citrate spacer on mucoadhesive properties of a novel water-soluble cationic 刍-cyclodextrin-conjugated chitosan, Carbohydrate Polymers 84, 186–194.
63. Wang X., Su Y., Yang H., Dong Z., Ma J., (2012), Highly sensitive fluorescence probe based on chitosan nanoparticle for selective detection of Hg2+ in water, Colloids and Surfaces A: Physicochem. Eng. Aspects 402, 88–93.
64. Deng P., Xu Z., Feng Y., Li J., (2012), lectrocatalytic reduction and determination of p-nitrophenol on acetylene black paste electrode coated with salicylaldehyde-modified chitosan, Sensors and Actuators B 168, 381–389.
65. Lian W., Huang J., Yu J., Zhang X., Lin Q., He X., Xing X., Liu S., (2012), A molecularly imprinted sensor based on -cyclodextrin incorporated multiwalled carbon 74 nanotube and gold nanoparticles-polyamide amine dendrimer nanocomposites combining with water-soluble chitosan derivative for the detection of chlortetracycline, Food Control 26, 620-627.
66. Chen X.G., Park H.J., (2003), Chemical characteristics of O-carboxymethyl
chitosans related to the preparation conditions, Carbohydrate Polymers 53, 355–359.
67. Xu Q., Mao C., Liu N.N., Zhu J.J., Sheng J., (2006), Direct electrochemistry of horseradish peroxidase based on biocompatible carboxymethyl chitosan–gold nanoparticle nanocomposite, Biosensors and Bioelectronics 22, 768–773.
68. Xu Q., Mao C., Liu N.N., Zhu J.J., Sheng J., (2006), Immobilization of horseradish peroxidase on O-carboxymethylated chitosan/sol–gel matrix, Reactive &; Functional Polymers 66, 863–870.
69. 游文雄, (2000), 鋰離子電池混合金屬氧化物陰極材料之電化學特性分析, 國立
中央大學化學工程所碩士論文, p28
70. Lee, S. H., Fang, H.Y., Chen, W. C., Lin, H. M., Chang, C. A., (2005),
Electrochemical study on screen-printed carbon electrodes with modification by iron nanoparticles in Fe(CN)6(4-/3-) redox system, Anal Bioanal Chem, 383, 532-538
71. Ueta, R. R., Diniz, F.B., (2008), Adsorption of concanavalin A and lentil lectin on platinum electrodes followed by electrochemical impedance spectroscopy: Effect of protein state, Colloid Surface B, 61, 244-249.
72. 陳志宏, (2005), 頻譜分析技術於幾丁寡醣修飾性葡萄糖生物感測器之應用, 國
立雲林科技大學化學工程所碩士論文, p30 75
73. Fernadez, S. C., McNeil, C. J., Rawson, K., (2005), Electrochemical impedance spectroscopy studies of polymer degradation: appli- cation to biosensor development., Trends in Analytical Chemistry, 24, 37-48
74. 陽輝, 盧文慶, (2001), 應用電化學, 北京科學出版社
75. Bard, A. J., (1980), Electrochemical methods:fundamentals and applicaiton , Wiley, New York. p228, 307, 370
76. 賈楚秋、楊文勝 編著,2004,應用電化學,北京高等教育出版社,pp. 336
77. Wang, J, (2000), Analytical electrochemistry, Second Edition, JOHN WILEY &;
SONS, INC., 60-62
78. Eggin, B. R., (2002), Chemical sensors and Biosensors, Wiley, New York, p32, 154
79. Lee SH, Fang HY, Chen WC, 2006, Amperometric glucose biosensor based on
screen-printedcarbon electrodes mediated with hexacyanoferrate–chitosan oligomers mixture. Sens. Actuators B 117:236-243.
80. Shan D, Wang S, He Y, Xue H, 2008, Amperometric glucose biosensor based on in situ electropolymerized polyaniline/ poly(acrylonitrile-co-acrylic acid) composite film. Materials Sci. Eng. C 28: 213- 217.
81. Kwan RGH, Leung HF, Hon PYT, Barford JP, Rennebery R, 2005, A
screen-printed biosensor using pyruvate oxidase for rapid determination of phos-phate in synthetic wastewater. Appl. Microb. Biotechnol. 66:377-383.
82. Huang L, Zhai M, Peng J, Xu L, Li J, Wei G, 2008, Preparation of low-molecu- 76 lar-weight carboxymethyl chitosan and their superoxide anion scavenging acti- vity. Carbohyd. Polym. 71:690- 693.
83. Sun T, Zhou D, Mao F, Zhu Y, 2007, Synthesis of room temperature ionic liquids from carboxymethylated chitosan , Eur. Polym. J. 43:652–656.
84. Lu Y, Yang M, Qu F, Shen G, Yu R, 2007, Enzyme-functionalized gold nano- wires for the fabrication of biosensors. Bioelectrochemistry 71:211–216.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔