[1] 焦劍, 姚軍燕. 功能高分子材料. 2007.
[2] Cohen S, Bano MC, Cima LG, Allcock HR, Vacanti JP, Vacanti CA. Design of synthetic polymeric structures for cell transplantation and tissue engineering. Clinical Materials. 1993;13:3-10.
[3] Hubbell, Jeffrey A, Langer, Robert. Tissue engineering. Chemical &; Engineering News Archive. 1995;73:42-54.
[4] Liu C, Xia Z, Czernuszka JT. Design and Development of Three-Dimensional Scaffolds for Tissue Engineering. Chemical Engineering Research and Design. 2007;85:1051-64.
[5] Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 2010;28:325-47.
[6] 王志光. 淺談骨組織再生. 高雄醫學大學e快報. 2009;128.
[7] Elsie S. Place NDE, Molly M. Stevens. Complexity in biomaterials for tissue engineering. Nat. Mater. 2009;8:457-70.
[8] Chen JP, Chang GY, Chen JK. Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2008;313-314:183-8.
[9] Wakita T, Obata A, Poologasundarampillai G, Jones JR, Kasuga T. Preparation of electrospun siloxane-poly(lactic acid)-vaterite hybrid fibrous membranes for guided bone regeneration. Composites Science and Technology. 2010;70:1889-93.
[10] Dubey G, Mequanint K. Conjugation of fibronectin onto three-dimensional porous scaffolds for vascular tissue engineering applications. Acta biomaterialia. 2011;7:1114-25.
[11] Place ES, George JH, Williams CK, Stevens MM. Synthetic polymer scaffolds for tissue engineering. Chem. Soc. Rev. 2009;38:1139-51.
[12] Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials. 2003;24:4353-64.
[13] Thomas Weigel GSaAL. Design and preparation of polymeric scaffolds for tissue engineering. Expert. Rev. Med. Devices. 2006:835–51.
[14] Son WK, Youk JH, Lee TS, Park WH. The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer. 2004;45:2959-66.
[15] Prabhakaran MP, Venugopal JR, Chyan TT, Hai LB, Chan CK, Lim AY, et al. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng Part A. 2008;14:1787-97.
[16] Pakravan M, Heuzey MC, Ajji A. A fundamental study of chitosan/PEO electrospinning. Polymer. 2011;52:4813-24.
[17] Liang D, Hsiao BS, Chu B. Functional electrospun nanofibrous scaffolds for biomedical applications. Advanced drug delivery reviews. 2007;59:1392-412.
[18] Cooper A, Bhattarai N, Zhang M. Fabrication and cellular compatibility of aligned chitosan–PCL fibers for nerve tissue regeneration. Carbohydr. Polym. 2011;85:149-56.
[19] 吳大誠, 杜仲良, 高緒珊. 奈米纖維. 2004.
[20] Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Adv. Mater. 2003;15.
[21] Lim SH, Hudson SM. Application of a fiber-reactive chitosan derivative to cotton fabric as an antimicrobial textile finish. Carbohydr. Polym. 2004;56:227-34.
[22] Ryu YJ, Kim HY, Lee KH, Park HC, Lee DR. Transport properties of electrospun nylon 6 nonwoven mats. European Polymer Journal. 2003;39:1883-9.
[23] Cheruvally G, Kim JK, Choi JW, Ahn JH, Shin YJ, Manuel J. Electrospun polymer membrane activated with room temperature ionic liquid: Novel polymer electrolytes for lithium batteries. J. Power Sources. 2007;172:863-9.
[24] Chuangchote S, Jitputti J, Sagawa T, Yoshikawa S. Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers. ACS Appl Mater Interfaces. 2009;1:1140-3.
[25] Balamurugan R, Sundarrajan S, Ramakrishna S. Recent Trends in Nanofibrous Membranes and Their Suitability for Air and Water Filtrations. Membranes. 2011;1:232-48.
[26] Liu T, Burger C, Chu B. Nanofabrication in polymer matrices. Prog. Polym. Sci. 2003;28:5-26.
[27] Burger C, Hsiao BS, Chu B. Nanofibrous Materials and Their Applications. Annu. Rev. Mater. Res. 2006;36:333-68.
[28] Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 1996 7 216–23.
[29] Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003;63:2223-53.
[30] Feng C, Khulbe KC, Matsuura T. Recent progress in the preparation, characterization, and applications of nanofibers and nanofiber membranes via electrospinning/interfacial polymerization. Journal of Applied Polymer Science. 2010;115:756-76.
[31] Baji A, Mai YW, Wong SC, Abtahi M, Chen P. Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Composites Science and Technology. 2010;70:703-18.
[32] Tan SH, Inai R, Kotaki M, Ramakrishna S. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer. 2005;46:6128-34.
[33] Gupta P, Elkins C, Long TE, Wilkes GL. Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer. 2005;46:4799-810.
[34] Tao J, Shivkumar S. Molecular weight dependent structural regimes during the electrospinning of PVA. Materials Letters. 2007;61:2325-8.
[35] Ki CS, Baek DH, Gang KD, Lee KH, Um IC, Park YH. Characterization of gelatin nanofiber prepared from gelatin–formic acid solution. Polymer. 2005;46:5094-102.
[36] Haghi AK, Akbari M. Trends in electrospinning of natural nano fibers. Phys Status Solidi. 2007;204:1830-4.
[37] Shalumon KT, Anulekha KH, Girish CM, Prasanth R, Nair SV, Jayakumar R. Single step electrospinning of chitosan/poly(caprolactone) nanofibers using formic acid/acetone solvent mixture. Carbohydr. Polym. 2010;80:413-9.
[38] Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer. 1999;40:4585–92.
[39] Zhang C, Yuan X, Wu L, Han Y, Sheng J. Study on morphology of electrospun poly(vinyl alcohol) mats. Eur Polym J. 2005;41:423-32.
[40] Kim B, Park H, Lee SH, Sigmund WM. Poly(acrylic acid) nanofibers by electrospinning. Materials Letters. 2005;59:829-32.
[41] Mo XM, Xu CY, Kotaki M, Ramakrishna S. Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials. 2004;25:1883-90.
[42] Xu C. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials. 2004;25:877-86.
[43] Kim G, Kim W. Formation of oriented nanofibers using electrospinning. Applied Physics Letters. 2006;88:233101.
[44] Sundaray B, Subramanian V, Natarajan TS, Xiang RZ, Chang CC, Fann WS. Electrospinning of continuous aligned polymer fibers. Applied Physics Letters. 2004;84:1222.
[45] Mit-uppatham C, Nithitanakul M, Supaphol P. Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter. Macromol. Chem. Phys. 2004;205:2327-38.
[46] Casper CL, Stephems JS, Tassi NG, Chase DB, Rabolt JF. Controlling surface morphology ofelectrospun polystyrene fibers: effect of humidity andmolecular weight in theelectrospinning process. Macromolecules. 2004;37:573–8.
[47] Tsigos I, Martinou A, Kafetzopoulos D, Bouriotis V. Chitin deacetylases: new, versatile tools in biotechnology. Trends Biotechnol. 2000;18:305-12.
[48] Majeti NV, Kumar R. A review of chitin and chitosan applications. Reactive &; Functional Polymers. 2000;46:1-27.
[49] Dash TK, Konkimalla VB. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. J Control Release 2012;158:15-33.
[50] Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Progress in Polymer Science. 2007;32:762-98.
[51] Caykara T, Demirci S, Eroğlu MS, Guven O. Poly(ethylene oxide) and its blends with sodium alginate. Polymer. 2005;46:10750-7.
[52] Nerem RM, Sambanis A. Tissue engineering: from biology to biological substitutes. Tissue engineering. 1995;1:3-13.
[53] Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920-6.
[54] Maguire JK Jr, Coscia MF, Lynch MH. Foreign body reaction to polymeric debris following total hip arthroplasty. Clin Orthop Relat Res. 1987:213-23.
[55] Hollister SJ. Porous scaffold design for tissue engineering. Nat. Mater. 2005;4:518-24.
[56] Stock UA, Vacanti JP. Tissue engineering: current state and prospects. Annu Rev Med. 2001;52:443-51.
[57] Bashur CA, Dahlgren LA, Goldstein AS. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D,L-lactic-co-glycolic acid) meshes. Biomaterials. 2006;27:5681-8.
[58] Selhuber-Unkel C, Erdmann T, Lopez-Garcia M, Kessler H, Schwarz US, Spatz JP. Cell adhesion strength is controlled by intermolecular spacing of adhesion receptors. Biophysical journal. 2010;98:543-51.
[59] Chaurey V, Block F, Su YH, Chiang PC, Botchwey E, Chou CF, et al. Nanofiber size-dependent sensitivity of fibroblast directionality to the methodology for scaffold alignment. Acta biomaterialia. 2012;8:3982-90.
[60] Chen M, Patra PK, Warner SB, Bhowmick S. Role of fiber diameter in adhesion and proliferation of NIH 3T3 fibroblast on electrospun polycaprolactone scaffolds. Tissue engineering. 2007;13:579-87.
[61] Stitzel J, Liu J, Lee SJ, Komura M, Berry J, Soker S, et al. Controlled fabrication of a biological vascular substitute. Biomaterials. 2006;27:1088-94.
[62] Chew SY, Mi R, Hoke A, Leong KW. Aligned Protein-Polymer Composite Fibers Enhance Nerve Regeneration: A Potential Tissue-Engineering Platform. Advanced functional materials. 2007;17:1288-96.
[63] Zhu Y, Wang A, Patel S, Kurpinski K, Diao E, Bao X, et al. Engineering bi-layer nanofibrous conduits for peripheral nerve regeneration. Tissue engineering Part C, Methods. 2011;17:705-15.
[64] Li M, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Lelkes PI. Electrospun protein fibers as matrices for tissue engineering. Biomaterials. 2005;26:5999-6008.
[65] Lee JW, Hua F, Lee DS. Thermoreversible gelation of biodegradable poly(epsilon-caprolactone) and poly(ethylene glycol) multiblock copolymers in aqueous solutions. Journal of controlled release : official journal of the Controlled Release Society. 2001;73:315-27.
[66] Sasaki T, Mizuuchi H, Sakurai K. Chitosan Derivatives/Calcium Carbonate Composite Capsules Prepared by the Layer-by-Layer Deposition Method II Stabilization of the Shell by Crosslinking. Journal of Nanomaterials. 2011;2011:1-7.
[67] 林麗娟. X光繞射原理及其應用. 1994;86:100-9.
[68] PerkinElmer. FT-IR Spectroscopy Attenuated Total Reflectance (ATR). PerkinElmer Life and Analytical Sciences; 2005. p. 1-5.
[69] 林文郎. 掃瞄式電子顯微鏡簡介. 科學月刊雜誌社. 1978;106.[70] 羅聖全. 研發奈米科技基本工具之一電子顯微鏡介紹-SEM. 工業技術研究院材料與化工研究所. 2004.
[71] Jaksch H. Field Emission SEM for true surface imaging and analysis. Materials World. 1996;4:583-4.
[72] Jaksch H, Martin JP. High-resolution, low-voltage SEM for true surface imaging and analysis. Fresenius J Anal Chem. 1995;353:378-82.
[73] Ragoubi M, George B, Molina S, Bienaime D, Merlin A, Hiver JM, et al. Effect of corona discharge treatment on mechanical and thermal properties of composites based on miscanthus fibres and polylactic acid or polypropylene matrix. Composites: Part A. 2012;43:675-85.
[74] Albanna MZ, Bou-Akl TH, Walters HL, 3rd, Matthew HW. Improving the mechanical properties of chitosan-based heart valve scaffolds using chitosan fibers. Journal of the mechanical behavior of biomedical materials. 2012;5:171-80.
[75] Yucel D, Kose GT, Hasirci V. Polyester based nerve guidance conduit design. Biomaterials. 2010;31:1596-603.
[76] Richard F. Wallin. Cytotoxicity. In: 10993-5, editor. Medical Device &; Diagnostic Industry Magazine1998.
[77] Barltrop JAea. 5-(3-carboxymethoxyphenyl)-2-(4,5-dimenthylthiazoly)-3-(4-sulfophenyl)tetrazolium, inner salt (MTS) and related analogs of 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide (MTT) reducing to purple water-soluble formazans as cell-viability indicators. Bioorg Med Chem Lett. 1991;1:611-4.
[78] Cory AH, Owen TC, Barltrop JA, Cory JG. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer communications. 1991;3:207-12.
[79] Riss TLaM, R.A. Comparison of MTT, XTT, and a novel tetrazolium compound for MTS for in vitro proliferation and chemosensitivity assays. Mol Biol Cell (Suppl). 1992;3:184a.
[80] BERRIDGE MV, TAN, S., MCCOY, K. D. and WANG, R. The biochemical and cellular basis of cell proliferation assays that use tetrazolium salts. Biochemica. 1996; 4,: 15 –20.
[81] Garcia Cruz DM, Gomez Ribelles JL, Salmeron Sanchez M. Blending polysaccharides with biodegradable polymers. I. Properties of chitosan/polycaprolactone blends. J Biomed Mater Res B Appl Biomater. 2008;85:303-13.
[82] Wang X, Zhao H, Turng LS, Li Q. Crystalline Morphology of Electrospun Poly(ε-caprolactone) (PCL) Nanofibers. Industrial &; Engineering Chemistry Research. 2013;52:4939-49.
[83] Liao CS, Ye WB. Structure and conductive properties of poly(ethylene oxide)/layered double hydroxide nanocomposite polymer electrolytes. Electrochimica Acta. 2004;49:4993-8.
[84] Nien YH, Wang JY, Tsai YS. The Preparation and Characterization of Highly Aligned Poly(ε-Caprolactone)/Poly Ethylene Oxide/Chitosan Ultrafine Fiber for the Application to Tissue Scaffold. J Nanosci Nanotechnol. 2013;13:4703-7
[85] Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S. Bio-functionalized PCL nanofibrous scaffolds for nerve tissue engineering. Materials Science and Engineering: C. 2010;30:1129-36.
[86] Wen SJ, Richardson TJ, Ghantous DI, Striebel KA, Ross PN, Cairns EJ. FTIR characterization of PEO + LiN(CF3SO2)2 electrolytes. Journal of Electroanalytical Chemistry. 1996;408:113-8.