(3.238.88.35) 您好!臺灣時間:2021/04/10 19:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂倩如
研究生(外文):Chien-Ju Lu
論文名稱:以三維具方向性奈米纖維製備細胞導管及其性質研究
論文名稱(外文):The preparation and characterization of 3D aligned nanofibrous cell conduit
指導教授:粘譽薰
指導教授(外文):Yu-Hsun Nien
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:122
中文關鍵詞:組織工程靜電紡絲細胞導管方向性奈米纖維
外文關鍵詞:Aligned ultra-fine fibrous structureElectrospinningTissue engineeringCellular conduits
相關次數:
  • 被引用被引用:1
  • 點閱點閱:188
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主旨為探討以靜電紡絲技術製備三維具有方向性奈米纖維導管支架,並將其應用於生醫領域組織工程之細胞導管。方向性奈米纖維是由聚己內酯(Polycaprolactone,簡稱 PCL)、聚乙烯氧化物(Polyethylene oxide,簡稱 PEO)以及幾丁聚醣(Chitosan,簡稱 CS)三種生物性材料所組成,從中討論方向性奈米纖維的基本性質與觀察三維導管支架導引細胞生長與貼附的情形。
論文首先利用黏度計與電導度計探討PCL/PEO/CS溶液之基本性質,觀察到隨CS含量的增加,溶液之黏度與電導度皆有增加的趨勢,從中決定出最合適的PCL/PEO/CS溶液比例為30 wt% PCL / PEO ( 3:2 ) + 0.7 g CS。
接著利用掃描式電子顯微鏡(SEM)觀察環境與製程參數對於靜電紡絲PCL/PEO/CS方向性奈米纖維的影響,其靜電紡絲PCL/PEO/CS方向性奈米纖維的最佳條件為固定輸出電壓18 kV、溶液流速0.021 ml/min、收集纖維距離12 cm、收集寬度3 cm、收集滾輪轉速1600 r.p.m.以及環境溫度30℃。從中進一步利用示差掃描式熱卡計(DSC)與X光繞射分析儀(XRD)觀察到PCL/PEO/CS奈米纖維隨滾輪轉速越快,纖維高分子之相對結晶度有增加的趨勢。
將製備完成的PCL/PEO/CS方向性奈米纖維藉由二異氰酸己烷(1,6-Diisocyanatohexane,簡稱HDI)交聯後,利用全反射紅外線光譜儀(ATR)觀察N-H特徵峰在1640 cm-1的表現,並且以長期抗降解性、膨潤性、抗拉強度評估其纖維的機械性質,觀察到交聯之PCL/PEO/CS方向性纖維抗降解性能較好、抗拉強度提升以及膨潤性較差,這與交聯機制相符合,但藉由SEM觀察到交聯後之纖維表面發生黏結、孔隙減少,這可能會影響細胞活性與貼附,進而改以雙層PCL/PEO+PCL/PEO/CS方向性奈米纖維導管結構增加其抗拉強度。
本研究亦將方向性奈米纖維依纖維對齊方向製備成三維具有方向性奈米纖維導管。進一步的將其導管進行纖維母細胞的體外細胞培養實驗,觀察到細胞於本研究之三維具有方向性奈米纖維導管上有良好的細胞活性,這也表示其導管對於細胞沒有毒性,並且從SEM觀察到細胞依纖維對齊方向進行貼附,表示PCL/PEO/CS三維具方向性纖維導管支架具有導引細胞生長促使組織的再生。
關鍵字:靜電紡絲、方向性奈米纖維、組織工程、細胞導管
The purpose of this study was to design and fabricate biodegradable conduits with aligned ultra-fine fibrous structures by electrospinning of polycaprolactone (PCL)/polyethylene oxide (PEO)/chitosan(CS) and characterize the properties of the biodegradable conduits with aligned ultra-fine fibrous structures. The conduit is used in the biomedical field of tissue engineering cell conduit and observe the case of conduit guide cell growth and affixed.
At first, the basic properties of the PCL/PEO/CS solution was observed with viscometer and conductivity meter, and found to increase with the content of the CS, the trend of increase in viscosity and conductivity of the solution. The optimal PCL/PEO/CS solution was at the ratio of 30 wt% PCL / PEO ( 3:2 ) + 0.7 g CS. The best conditions of manufacturing PCL/PEO/CS aligned ultra-fine fibrous structures were (1) the working voltage of 18 kV, (2) flow rate 0.021 ml/min, (3) collection fiber distance of 12 cm, (4) roller speed of 1600 r.p.m., and (5)30 °C. From further use of differential scanning calorimeter (DSC) and X-ray diffractometer (XRD) to investigate the impact between the aligned ultra-fine fibrous and the crystallinity of the polymer, it was found that with the collection of the roller the faster the speed, the longer the fiber directional, relative degree of crystallinity of the better. In addition, the cross link of PCL/PEO/CS aligned ultra-fine fibers by cross-linking agent (1,6-Diisocyanatohexane) solution was examined, too.
The chemical analysis, mechanical strength and biodegradation of the aligned ultra-fine fibers with or without cross link were characterized using FT-IR spectroscopy attenuated total reflectance(ATR), long-term resistance to degradation of performance evaluation, swelling index and tensile test machine.
Finally, we use fibroblast to observe cell morphology and proliferation on the biodegradable conduits with aligned ultra-fine fibrous structures. The results show that the biodegradable conduits with aligned ultra-fine fibrous structures have potential in the application of artificial cellular conduits.

Keyword:Electrospinning, Aligned ultra-fine fibrous structure, Tissue engineering, Cellular conduits
中文摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章、 緒論 - 1 -
1.1 前言 - 1 -
1.2 三維導引支架 - 3 -
1.3 研究動機與目的 - 4 -
第二章、 文獻回顧 - 6 -
2.1 奈米纖維 - 6 -
2.2 靜電紡絲技術 - 7 -
2.3 影響靜電紡絲技術之參數 - 8 -
2.3.1.1 聚合物之分子量 - 9 -
2.3.1.2 濃度與黏度 - 11 -
2.3.1.3 溶劑 - 13 -
2.3.1.4 表面張力 - 14 -
2.3.1.5電導度 - 15 -
2.3.2 製程參數 - 16 -
2.3.2.1 電壓 - 16 -
2.3.2.2 溶液流速 - 17 -
2.3.2.3 針頭至收集處距離 - 18 -
2.3.2.4 收集器的種類 - 18 -
2.3.3 環境參數 - 21 -
2.4.1 幾丁聚醣( Chitosan ) - 22 -
2.4.2 聚己內酯(Polycaprolactone) - 24 -
2.4.3 聚乙烯氧化物 (Polyethylene oxide) - 25 -
2.5 組織工程(Tissue engineering) - 26 -
2.5.1 方向性纖維導管組織支架 - 27 -
第三章、 實驗內容與方法 - 29 -
3.1 實驗藥品 - 29 -
3.2 實驗儀器 - 31 -
3.3 實驗流程 - 34 -
3.4 溶液製備 - 35 -
3.4.1 溶液性質檢測 - 37 -
3.4.1.1 黏度 - 37 -
3.4.1.2 電導度 - 37 -
3.5 靜電紡絲裝置與工作參數 - 38 -
3.6 超細纖維墊交聯 - 39 -
3.7 材料基本檢測 - 41 -
3.7.1 熱性質分析-DSC - 41 -
3.7.2 結晶性分析-XRD - 43 -
3.7.3 官能基鑑定-ATR - 45 -
3.7.4 表面型態分析-SEM - 46 -
3.7.5 長期抗降解性分析 - 48 -
3.7.6 膨潤性分析-吸水率 - 49 -
3.7.7 機械性質分析-抗拉強度 - 49 -
3.8 三維導管支架的製備 - 50 -
3.9 體外細胞分析實驗 - 51 -
3.9.1 體外細胞分析實驗流程 - 51 -
3.9.2 細胞活性與毒性測試(MTS assay) - 54 -
第四章、 結果與討論 - 56 -
4.1溶液基本性質 - 56 -
4.1.1溶液的製備與設計 - 56 -
4.1.2 溶液黏度與電導度 - 61 -
4.2 靜電紡絲參數設定 - 62 -
4.2.1 環境溫度 - 62 -
4.2.2 溶液流速 - 62 -
4.2.3 收集距離 - 66 -
4.3 方向性纖維對齊程度 - 72 -
4.4 滾輪轉速與纖維結晶度的關係 - 76 -
4.4.1 DSC分析 - 76 -
4.4.1 XRD分析 - 78 -
4.5 纖維交聯 - 80 -
4.6機械性質分析 - 83 -
4.6.1 抗降解性能評估 - 83 -
4.6.2 膨潤性能評估 - 85 -
4.6.3 抗拉強度評估 - 86 -
4.7 體外細胞培養 - 91 -
4.7.1 細胞活性與毒性測試(MTS assay) - 91 -
4.7.2 細胞貼附 - 94 -
第五章、 結論及未來方向 - 99 -
5.1 結論 - 99 -
5.2 未來方向 - 101 -
附錄 - 102 -
參考文獻 - 106 -
[1] 焦劍, 姚軍燕. 功能高分子材料. 2007.
[2] Cohen S, Bano MC, Cima LG, Allcock HR, Vacanti JP, Vacanti CA. Design of synthetic polymeric structures for cell transplantation and tissue engineering. Clinical Materials. 1993;13:3-10.
[3] Hubbell, Jeffrey A, Langer, Robert. Tissue engineering. Chemical &; Engineering News Archive. 1995;73:42-54.
[4] Liu C, Xia Z, Czernuszka JT. Design and Development of Three-Dimensional Scaffolds for Tissue Engineering. Chemical Engineering Research and Design. 2007;85:1051-64.
[5] Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 2010;28:325-47.
[6] 王志光. 淺談骨組織再生. 高雄醫學大學e快報. 2009;128.
[7] Elsie S. Place NDE, Molly M. Stevens. Complexity in biomaterials for tissue engineering. Nat. Mater. 2009;8:457-70.
[8] Chen JP, Chang GY, Chen JK. Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2008;313-314:183-8.
[9] Wakita T, Obata A, Poologasundarampillai G, Jones JR, Kasuga T. Preparation of electrospun siloxane-poly(lactic acid)-vaterite hybrid fibrous membranes for guided bone regeneration. Composites Science and Technology. 2010;70:1889-93.
[10] Dubey G, Mequanint K. Conjugation of fibronectin onto three-dimensional porous scaffolds for vascular tissue engineering applications. Acta biomaterialia. 2011;7:1114-25.
[11] Place ES, George JH, Williams CK, Stevens MM. Synthetic polymer scaffolds for tissue engineering. Chem. Soc. Rev. 2009;38:1139-51.
[12] Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials. 2003;24:4353-64.
[13] Thomas Weigel GSaAL. Design and preparation of polymeric scaffolds for tissue engineering. Expert. Rev. Med. Devices. 2006:835–51.
[14] Son WK, Youk JH, Lee TS, Park WH. The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer. 2004;45:2959-66.
[15] Prabhakaran MP, Venugopal JR, Chyan TT, Hai LB, Chan CK, Lim AY, et al. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng Part A. 2008;14:1787-97.
[16] Pakravan M, Heuzey MC, Ajji A. A fundamental study of chitosan/PEO electrospinning. Polymer. 2011;52:4813-24.
[17] Liang D, Hsiao BS, Chu B. Functional electrospun nanofibrous scaffolds for biomedical applications. Advanced drug delivery reviews. 2007;59:1392-412.
[18] Cooper A, Bhattarai N, Zhang M. Fabrication and cellular compatibility of aligned chitosan–PCL fibers for nerve tissue regeneration. Carbohydr. Polym. 2011;85:149-56.
[19] 吳大誠, 杜仲良, 高緒珊. 奈米纖維. 2004.
[20] Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Adv. Mater. 2003;15.
[21] Lim SH, Hudson SM. Application of a fiber-reactive chitosan derivative to cotton fabric as an antimicrobial textile finish. Carbohydr. Polym. 2004;56:227-34.
[22] Ryu YJ, Kim HY, Lee KH, Park HC, Lee DR. Transport properties of electrospun nylon 6 nonwoven mats. European Polymer Journal. 2003;39:1883-9.
[23] Cheruvally G, Kim JK, Choi JW, Ahn JH, Shin YJ, Manuel J. Electrospun polymer membrane activated with room temperature ionic liquid: Novel polymer electrolytes for lithium batteries. J. Power Sources. 2007;172:863-9.
[24] Chuangchote S, Jitputti J, Sagawa T, Yoshikawa S. Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers. ACS Appl Mater Interfaces. 2009;1:1140-3.
[25] Balamurugan R, Sundarrajan S, Ramakrishna S. Recent Trends in Nanofibrous Membranes and Their Suitability for Air and Water Filtrations. Membranes. 2011;1:232-48.
[26] Liu T, Burger C, Chu B. Nanofabrication in polymer matrices. Prog. Polym. Sci. 2003;28:5-26.
[27] Burger C, Hsiao BS, Chu B. Nanofibrous Materials and Their Applications. Annu. Rev. Mater. Res. 2006;36:333-68.
[28] Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 1996 7 216–23.
[29] Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003;63:2223-53.
[30] Feng C, Khulbe KC, Matsuura T. Recent progress in the preparation, characterization, and applications of nanofibers and nanofiber membranes via electrospinning/interfacial polymerization. Journal of Applied Polymer Science. 2010;115:756-76.
[31] Baji A, Mai YW, Wong SC, Abtahi M, Chen P. Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Composites Science and Technology. 2010;70:703-18.
[32] Tan SH, Inai R, Kotaki M, Ramakrishna S. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer. 2005;46:6128-34.
[33] Gupta P, Elkins C, Long TE, Wilkes GL. Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer. 2005;46:4799-810.
[34] Tao J, Shivkumar S. Molecular weight dependent structural regimes during the electrospinning of PVA. Materials Letters. 2007;61:2325-8.
[35] Ki CS, Baek DH, Gang KD, Lee KH, Um IC, Park YH. Characterization of gelatin nanofiber prepared from gelatin–formic acid solution. Polymer. 2005;46:5094-102.
[36] Haghi AK, Akbari M. Trends in electrospinning of natural nano fibers. Phys Status Solidi. 2007;204:1830-4.
[37] Shalumon KT, Anulekha KH, Girish CM, Prasanth R, Nair SV, Jayakumar R. Single step electrospinning of chitosan/poly(caprolactone) nanofibers using formic acid/acetone solvent mixture. Carbohydr. Polym. 2010;80:413-9.
[38] Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer. 1999;40:4585–92.
[39] Zhang C, Yuan X, Wu L, Han Y, Sheng J. Study on morphology of electrospun poly(vinyl alcohol) mats. Eur Polym J. 2005;41:423-32.
[40] Kim B, Park H, Lee SH, Sigmund WM. Poly(acrylic acid) nanofibers by electrospinning. Materials Letters. 2005;59:829-32.
[41] Mo XM, Xu CY, Kotaki M, Ramakrishna S. Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials. 2004;25:1883-90.
[42] Xu C. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials. 2004;25:877-86.
[43] Kim G, Kim W. Formation of oriented nanofibers using electrospinning. Applied Physics Letters. 2006;88:233101.
[44] Sundaray B, Subramanian V, Natarajan TS, Xiang RZ, Chang CC, Fann WS. Electrospinning of continuous aligned polymer fibers. Applied Physics Letters. 2004;84:1222.
[45] Mit-uppatham C, Nithitanakul M, Supaphol P. Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter. Macromol. Chem. Phys. 2004;205:2327-38.
[46] Casper CL, Stephems JS, Tassi NG, Chase DB, Rabolt JF. Controlling surface morphology ofelectrospun polystyrene fibers: effect of humidity andmolecular weight in theelectrospinning process. Macromolecules. 2004;37:573–8.
[47] Tsigos I, Martinou A, Kafetzopoulos D, Bouriotis V. Chitin deacetylases: new, versatile tools in biotechnology. Trends Biotechnol. 2000;18:305-12.
[48] Majeti NV, Kumar R. A review of chitin and chitosan applications. Reactive &; Functional Polymers. 2000;46:1-27.
[49] Dash TK, Konkimalla VB. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. J Control Release 2012;158:15-33.
[50] Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Progress in Polymer Science. 2007;32:762-98.
[51] Caykara T, Demirci S, Eroğlu MS, Guven O. Poly(ethylene oxide) and its blends with sodium alginate. Polymer. 2005;46:10750-7.
[52] Nerem RM, Sambanis A. Tissue engineering: from biology to biological substitutes. Tissue engineering. 1995;1:3-13.
[53] Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920-6.
[54] Maguire JK Jr, Coscia MF, Lynch MH. Foreign body reaction to polymeric debris following total hip arthroplasty. Clin Orthop Relat Res. 1987:213-23.
[55] Hollister SJ. Porous scaffold design for tissue engineering. Nat. Mater. 2005;4:518-24.
[56] Stock UA, Vacanti JP. Tissue engineering: current state and prospects. Annu Rev Med. 2001;52:443-51.
[57] Bashur CA, Dahlgren LA, Goldstein AS. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D,L-lactic-co-glycolic acid) meshes. Biomaterials. 2006;27:5681-8.
[58] Selhuber-Unkel C, Erdmann T, Lopez-Garcia M, Kessler H, Schwarz US, Spatz JP. Cell adhesion strength is controlled by intermolecular spacing of adhesion receptors. Biophysical journal. 2010;98:543-51.
[59] Chaurey V, Block F, Su YH, Chiang PC, Botchwey E, Chou CF, et al. Nanofiber size-dependent sensitivity of fibroblast directionality to the methodology for scaffold alignment. Acta biomaterialia. 2012;8:3982-90.
[60] Chen M, Patra PK, Warner SB, Bhowmick S. Role of fiber diameter in adhesion and proliferation of NIH 3T3 fibroblast on electrospun polycaprolactone scaffolds. Tissue engineering. 2007;13:579-87.
[61] Stitzel J, Liu J, Lee SJ, Komura M, Berry J, Soker S, et al. Controlled fabrication of a biological vascular substitute. Biomaterials. 2006;27:1088-94.
[62] Chew SY, Mi R, Hoke A, Leong KW. Aligned Protein-Polymer Composite Fibers Enhance Nerve Regeneration: A Potential Tissue-Engineering Platform. Advanced functional materials. 2007;17:1288-96.
[63] Zhu Y, Wang A, Patel S, Kurpinski K, Diao E, Bao X, et al. Engineering bi-layer nanofibrous conduits for peripheral nerve regeneration. Tissue engineering Part C, Methods. 2011;17:705-15.
[64] Li M, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Lelkes PI. Electrospun protein fibers as matrices for tissue engineering. Biomaterials. 2005;26:5999-6008.
[65] Lee JW, Hua F, Lee DS. Thermoreversible gelation of biodegradable poly(epsilon-caprolactone) and poly(ethylene glycol) multiblock copolymers in aqueous solutions. Journal of controlled release : official journal of the Controlled Release Society. 2001;73:315-27.
[66] Sasaki T, Mizuuchi H, Sakurai K. Chitosan Derivatives/Calcium Carbonate Composite Capsules Prepared by the Layer-by-Layer Deposition Method II Stabilization of the Shell by Crosslinking. Journal of Nanomaterials. 2011;2011:1-7.
[67] 林麗娟. X光繞射原理及其應用. 1994;86:100-9.
[68] PerkinElmer. FT-IR Spectroscopy Attenuated Total Reflectance (ATR). PerkinElmer Life and Analytical Sciences; 2005. p. 1-5.
[69] 林文郎. 掃瞄式電子顯微鏡簡介. 科學月刊雜誌社. 1978;106.
[70] 羅聖全. 研發奈米科技基本工具之一電子顯微鏡介紹-SEM. 工業技術研究院材料與化工研究所. 2004.
[71] Jaksch H. Field Emission SEM for true surface imaging and analysis. Materials World. 1996;4:583-4.
[72] Jaksch H, Martin JP. High-resolution, low-voltage SEM for true surface imaging and analysis. Fresenius J Anal Chem. 1995;353:378-82.
[73] Ragoubi M, George B, Molina S, Bienaime D, Merlin A, Hiver JM, et al. Effect of corona discharge treatment on mechanical and thermal properties of composites based on miscanthus fibres and polylactic acid or polypropylene matrix. Composites: Part A. 2012;43:675-85.
[74] Albanna MZ, Bou-Akl TH, Walters HL, 3rd, Matthew HW. Improving the mechanical properties of chitosan-based heart valve scaffolds using chitosan fibers. Journal of the mechanical behavior of biomedical materials. 2012;5:171-80.
[75] Yucel D, Kose GT, Hasirci V. Polyester based nerve guidance conduit design. Biomaterials. 2010;31:1596-603.
[76] Richard F. Wallin. Cytotoxicity. In: 10993-5, editor. Medical Device &; Diagnostic Industry Magazine1998.
[77] Barltrop JAea. 5-(3-carboxymethoxyphenyl)-2-(4,5-dimenthylthiazoly)-3-(4-sulfophenyl)tetrazolium, inner salt (MTS) and related analogs of 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide (MTT) reducing to purple water-soluble formazans as cell-viability indicators. Bioorg Med Chem Lett. 1991;1:611-4.
[78] Cory AH, Owen TC, Barltrop JA, Cory JG. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer communications. 1991;3:207-12.
[79] Riss TLaM, R.A. Comparison of MTT, XTT, and a novel tetrazolium compound for MTS for in vitro proliferation and chemosensitivity assays. Mol Biol Cell (Suppl). 1992;3:184a.
[80] BERRIDGE MV, TAN, S., MCCOY, K. D. and WANG, R. The biochemical and cellular basis of cell proliferation assays that use tetrazolium salts. Biochemica. 1996; 4,: 15 –20.
[81] Garcia Cruz DM, Gomez Ribelles JL, Salmeron Sanchez M. Blending polysaccharides with biodegradable polymers. I. Properties of chitosan/polycaprolactone blends. J Biomed Mater Res B Appl Biomater. 2008;85:303-13.
[82] Wang X, Zhao H, Turng LS, Li Q. Crystalline Morphology of Electrospun Poly(ε-caprolactone) (PCL) Nanofibers. Industrial &; Engineering Chemistry Research. 2013;52:4939-49.
[83] Liao CS, Ye WB. Structure and conductive properties of poly(ethylene oxide)/layered double hydroxide nanocomposite polymer electrolytes. Electrochimica Acta. 2004;49:4993-8.
[84] Nien YH, Wang JY, Tsai YS. The Preparation and Characterization of Highly Aligned Poly(ε-Caprolactone)/Poly Ethylene Oxide/Chitosan Ultrafine Fiber for the Application to Tissue Scaffold. J Nanosci Nanotechnol. 2013;13:4703-7
[85] Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S. Bio-functionalized PCL nanofibrous scaffolds for nerve tissue engineering. Materials Science and Engineering: C. 2010;30:1129-36.
[86] Wen SJ, Richardson TJ, Ghantous DI, Striebel KA, Ross PN, Cairns EJ. FTIR characterization of PEO + LiN(CF3SO2)2 electrolytes. Journal of Electroanalytical Chemistry. 1996;408:113-8.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔