跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/21 19:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱奕錦
研究生(外文):Yi-chin Chiu
論文名稱:以水熱法製備鐵摻雜氧化鈦奈米帶粉體應用於染料敏化太陽能電池陽極
論文名稱(外文):Iron-doped titanium oxide nanobelt powders prepared by hydrothermal method for dye-sensitized solar cell anode
指導教授:王健聰王健聰引用關係
指導教授(外文):Chien-tsung Wang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:48
中文關鍵詞:二氧化鈦奈米帶鐵摻雜二氧化鈦染料敏化太陽能電池水熱法
外文關鍵詞:Dye-sensitized solar cellsIron-doped titaniaHydrothermalTitania nanobelts
相關次數:
  • 被引用被引用:0
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
二氧化鈦奈米粒應用於染料敏化太陽能電池光陽極材料已被廣泛研究,然而其電池效率尚未達到很大的改善,主要是因為染料敏化太陽能電池的光電流及開路電壓不佳。改善光電流的方法為:增加染料吸附量、降低導帶位置以提高染料激發電子注入導帶的驅動力、降低電子於陽極傳遞時的界面阻抗,改善開路電壓的方法:提高導帶位置以增加導帶與電解液氧化還原電位之間的差距及降低暗電流。利用二氧化鈦奈米帶一維結構的特性,增加電子傳遞的速度,提升電子收集的效率。
本研究利用水熱法製備鐵摻雜二氧化鈦奈米帶粉體,藉由X射線繞射儀(XRD)、場發射掃描式電子顯微鏡 (FESEM)、高解析電子能譜儀(HRXPS)、擴散-反射式紫外光-可見光光譜儀(UV-vis DRS)及接觸角量角儀以檢測鐵摻雜濃度對二氧化鈦奈米帶性質的影響;將鐵摻雜二氧化鈦奈米帶粉體製備成染料敏化太陽能電池,檢測鐵摻雜濃度對光電性質的影響。
由線性掃描伏安(LSV)及電化學阻抗圖譜(EIS)分析顯示,鐵摻雜濃度在Fe/Ti=0.0005時有最大的開路電壓及最小的界面阻抗。所以鐵摻雜濃度在Fe/Ti=0.0005時有最佳的電池效率為0.35%,比Fe/Ti=0的電池效率0.22%提升了59.1%。鐵摻雜濃度為Fe/Ti=0.0005時,其染料敏化太陽能電池的電池效率增加的原因有以下三點:(1)染料吸附量增加、(2)開路電壓提升、(3)電子於陽極傳遞時的界面阻抗下降。
Titanium dioxide nanoparticles used in dye-sensitized solar cell photoanode materials have been extensively studied, however, the cell efficiency have much room for improvement, mainly because of the poor DSSC photocurrent and the open circuit voltage. The method of improving photocurrent are increasing amount of dye adsorbed, reducing the conduction band position to improve the driving forces of electron injection from dye molecule and enhancing interface impedance of electron transfer at the anode. The method of improving the open circuit voltage are increasing the conduction band position to increase the gap between the conduction band and redox potential of the electrolyte, reducing the dark current. By using the characteristic of one dimensional structure increase the rate of electron transfer and enhance the efficiency of electron collection.
In this study, iron doped titania nanobelts were prepared by hydrothermal method and analyzed by X-ray diffraction(XRD), field emission scanning electron microscopy(FE-SEM), electron paramagnetic resonance spectrometer(HR-EPR), UV-vis diffuse reflectance spectroscopy(UV-vis DRS)and contact angle goniometer, furthermore, the dye-sensitized solar cells are made by titania nanobelts and the iron doping concentrations on the effect of DSSC photoelectric properties is also being studied.
The maximum open circuit voltage, the best interface impedance and the best DSSC efficiency (0.35 %) will appear when the iron doping concentration is 0.0005 (Fe/Ti) based on Linear Sweep Voltammetry(LSV) and electrochemical impedance spectroscopy (EIS). Compared with the DSSC efficiency (0.22 %) made of undoped titania nanobelts (Fe/Ti = 0), the DSSC efficiency improved 51.9 %. The improvement of DSSC efficiency when Fe/Ti=0.0005 is attributed to three factors: (1) increasing the amount of dye absorption, (2) enhancing the open circuit voltage, (3) enhancing interface impedance of electron transfer at the anode.
中文摘要-i-
英文摘要-ii-
誌謝-iii-
目錄-iv-
表目錄-v-
圖目錄-vi-
第一章、緒論-1-
1.1 概述-1-
1.2 研究動機-2-
1.3 研究目標-3-
第二章、文獻回顧-4-
2.1 染料敏化太陽能電池-4-
2.1.1 染料敏化太陽能電池的工作原理-4-
2.1.2 染料敏化太陽能電池的組成-5-
2.2 一維結構的奈米材料-8-
2.2.1 水熱法的原理及優點-9-
2.2.2 水熱法合成二氧化鈦奈米帶-9-
2.3 染料敏化太陽能電池光陽極材料-12-
2.3.1 添加一維結構至二氧化鈦奈米粒子製成光陽極材料-13-
2.3.2 金屬摻雜二氧化鈦光陽極材料-16-
2.4 鐵摻雜二氧化鈦的性質-19-
第三章、實驗方法-24-
3.1 研究大綱-24-
3.2 實驗藥品-24-
3.3 水熱合成鐵摻雜二氧化鈦奈米帶-25-
3.4 材料性質檢測與光電性質量測-25-
第四章、結果與討論-27-
4.1 水熱法合成鐵摻雜二氧化鈦奈米帶粉體結構鑑定及陽極性質-27-
4.2 鐵摻雜二氧化鈦奈米帶於染料敏化太陽能電池的光電性質-32-
第五章、結論-36-
第六章、參考文獻-37-
[1] H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, Nature, 261, (1976), 402-403.
[2] B. O’Regan, M. Gratzel, Nature, 353, (1991), 737-740. [3] S.A. Haque, E. Palomares, H.M. Upadhyaya, L. Otley, R.J. Potter, A.B. Holmesc, J.R. Durrant, Chemical Communications, 2003, 3008-3009.
[4] C.P. Hsu, K.M. Lee, J.T.W. Huang, C.Y. Lin, C.H. Lee, L.P. Wang, S.Y. Tsai,
K.C. Ho, Electrochimica Acta, 53, (2008) 7514-7522.
[5] M. Gratzel, Nature, 414, (2001), 338-344.
[6] M. Gratzel, Inorganic Chemistry, 44, (2005), 6841-6851.
[7] Md.K. Nazeeruddin, E. Baranoff, M. Gratzel, Solar Energy 85 (2011) 1172-1178.
[8] D. Cahen, G. Hodes, M. Gratzel, J.F. Guillemoles, I. Riess, Journal of Physical Chemistry B, 104 (2000), 2053-2059.
[9] G.Wolfbauer, A.M. Bond, J.C. Eklund, D.R. MacFarlane, Solar Energy Materials &;
Solar Cells, 70, (2001), 85-101.
[10] R. Ma, K. Fukuda, T. Sasaki, M. Osada, Y. Bando, Journal of Physical Chemistry B, 109, ( 2005), 6210-6214.
[11] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir, 14, (1998), 3160-3163.
[12] A. Elsanousi, E.M. Elssfah, J. Zhang, J. Lin, H.S. Song, C. Tang, Journal of Physical Chemistry C, 111, (2007), 14353-14357.
[13] H. Yin, G. Ding, B. Gao, F. Huang, X. Xie, M. Jiang, Materials Research Bulletin, 47, (2012), 3124–3128.
[14] W. Zhou, L. Gai, P. Hu, J. Cui, X. Liu, D. Wang, G. Li, H. Jiang, D. Liu, H. Liu, J. Wang, CrystEngComm, 13, (2011), 6643–6649.
[15] J. Qu, X.P. Gao, G.R. Li, Q.W. Jiang, T.Y. Yan, Journal of Physical Chemistry C, 113, (2009), 3359–3363.
[16] X.D. Li, D.W. Zhang, S. Chen, Z.A. Wang, Z. Sun, X.J. Yin, S.M. Huang, Materials Chemistry and Physics, 124, (2010), 179-183.
[17] J. Chen, B. Li, J. Zheng, S. Jia, J. Zhao, H. Jing, Z. Zhu, Journal of Physical Chemistry C, 115, (2011), 7104–7113.
[18] K. Pan, Y. Dong, C. Tian, W. Zhou, G. Tian, B. Zhao, H. Fu, Electrochimica Acta, 54, (2009), 7350-7356.
[19] K. Pan, Y. Dong, W. Zhou, G. Wang, Q. Pan, Y. Yuan, X. Miao, G. Tian, Electrochimica Acta, 88, (2013), 263-269.
[20] K.M. Lee, V. Suryanarayanan, J.H. Huang, K.R. Justin Thomas,J.T. Lin, K.C. Ho, Electrochimica Acta, 54, (2009), 4123–4130.
[21] Y. Xiao, J. Wu, G. Yue, G. Xie, J. Lin, M. Huang, Electrochimica Acta, 55, (2010) 4573–4578.
[22] V. Thavasi, V. Renugopalakrishnan, R. Jose, S. Ramakrishna, Materials Science and Engineering R, 63, (2009), 81-99.
[23] T. Nikolay, L. Larina, O. Shevaleevskiy. B.T. Ahn, Energy &; Environmental Science, 4, (2011), 1480–1486.
[24] X. Lu, X. Mou, J. Wu, D. Zhang, L. Zhang, F. Huang, F. Xu, S. Huang, Advanced Functional Materials, 20, (2010), 509-515.
[25] C. Zhang, S. Chen, L. Mo, Y. Huang, H. Tian, L. Hu, Z. Huo, S. Dai, F. Kong,
X. Pan, Journal of Physical Chemistry C, 115, (2011), 16418–16424.
[26] X. Zhang, F. Liu, Q.L. Huang, G. Zhou, Z.S. Wang, Journal of Physical Chemistry C, 115, (2011), 12665–12671
[27] Q. Liu, Y. Zhou, Y. Duan, M. Wang, X. Zhao, Y. Lin, Journal of Alloys and Compounds, 548, (2013), 161-165.
[28] J. Zhang, Z. Zhao, X. Wang, T. Yu, J. Guan, Z. Yu, Z. Li, Z. Zou, Journal of Physical Chemistry C, 114, (2010), 18396–18400.
[29] Y. Duan, N. Fu, Q. Liu, Y. Fang, X. Zhou, J. Zhang, Y. Lin, Journal of Physical Chemistry C, 116, (2012), 8888−8893.
[30] K.P. Wang, H. Teng, Physical Chemistry Chemical Physics, 11, (2009), 9489–9496.
[31] S. Kim, S.J. Hwang, W. Choi, Journal of Physical Chemistry B, 109, (2005), 24260-24267.
[32] S. Klosek, D. Raftery, Journal of Physical Chemistry B, 105, (2001), 2815-2819.
[33] J. Chae, D.Y. Kim, S. Kim, M. Kang, Journal of Industrial and Engineering Chemistry, 16, (2010), 906-911.
[34] K.H. Ko, Y.C. Lee, Y.J. Jung, Journal of Colloid and Interface Science, 283, (2005) 482–487.
[35] S.K.S. Patel, S. Kurian, N.S. Gajbhiye, Materials Research Bulletin, 48, (2013), 655-660.
[36] K. Elghniji, A. Atyaoui, S. Livraghi, L. Bousselmi, E. Giamello, M. Ksibi, Journal of Alloys and Compounds, 541, (2012), 421-427.
[37] C.C. Wang, K.W. Wang, T.P. Perng, Applied Physics Letters, 96, (2010), 143102.
[38] C.Y. Wang, C.Bottcher, D.W. Bahnemann, J.K. Dohrmann, Journal of Materials Chemistry, 13, (2003), 2322-2329.
[39] F. Gracia, J.P. Holgado, A. Caballero, A.R. Gonzalez-Elipe, Journal of Physical Chemistry B, 108, (2004), 17466-17476.
[40] M.C. Wang, H.J. Lin, T.S. Yang, Journal of Alloys and Compounds, 473, (2009) 394-400.
[41] B. Xin, Z. Ren, P. Wang, J. Liu, L. Jing, H. Fu, Applied Surface Science, 253, (2007), 4390–4395.
[42] A.P. Singh, S. Kumari, R. Shrivastav, S. Dass, V.R. Satsangi, International journal
of hydrog enenergy, 33, (2008), 5363-5368.
[43] D. Wang, F. Zhou, C. Wang, W. Liu, Microporous and Mesoporous Materials, 116, (2008), 658-664.
[44] J. Yu, Q. Xiang, M. Zhou, Applied Catalysis B: Environmental, 90, (2009),
595-602.
[45] M. Zhou, J. Yu, B. Cheng, H. Yu, Materials Chemistry and Physics, 93, (2005), 159-163.
[46] Z. Li, W. Shen, W. He, X. Zu, Journal of Hazardous Materials, 155, (2008), 590-594.
[47] L. Wen, B, Liu, X, Zhao, K, Nakata, T. Murakami, A. Fujishima, International Journal of Photoenergy, (2012), 368750.
[48] L.Deng, S. Wang, D. Liu, B. Zhu, W. Huang, S. Wu, S. Zhang, Catal Lett, 129, (2009), 513-518.
[49] Z. Liu, Y. Wang, W. Chu, Z. Li, C. Ge, Journal of Alloys and Compounds, 501, (2010), 54-59.
[50] C.C. Wang, K.W. Wang, T.P. Perng, Applied Physics Letters, 96, (2010), 143102.
[51] Q. Wu, J. Ouyang, K. Xie, L. Sun, M. Wang, C. Lin, Journal of Hazardous Materials, 199, (2012), 410-417.
[52] C. Fabrega, T. Andreu, A. Cabot, J.R. Morante, Journal of Photochemistry and Photobiology A: Chemistry, 211, (2010), 170-175.
[53] T. Tong, J. Zhang, B. Tian, F. Chen, D. He, Journal of Hazardous Materials, 155, (2008), 572-579.
[54] Y. Cong, J. Zhang, F. Chen, M. Anpo, D. He, Journal of Physical Chemistry C, 111, (2007), 10618-10623.
[55] N. Sakai, A. Fujishima, T. Watanabe, K. Hashimoto, Journal of Physical Chemistry B, 107, (2003), 1028-1035.
[56] T.H. Meen, C.J. Huang, S.M. Chao, J.K. Tsai, W. Water, W.R. Chen, Y.S. Liu, L.W. Ji, Journal of Physics and Chemistry of Solids, 72, (2011), 653-656.
[57] Md.K. Parvez, G.M. Yoo, J.H. Kim, M.J. Ko, S.R. Kim, Chemical Physics Letters, 495, (2010), 69-72.
[58] S. Saekow, W. Maiakgree, W. Jarernboon, S. Pimanpang , V. Amornkitbamrung, Journal of Non-Crystalline Solids, 358, (2012), 2496-2500.
[59] S.R. Kim, M. Al-Mamun, Y.H. Ko, Chemical Physics Letters, 538, (2012), 77-81.
[60] R. Liu, W.D. Yang, L.S. Qiang, Journal of Power Sources, 199, (2012), 418-425.
Physical Chemistry C, 115, (2011), 8825-8831.
[63] Z. Zhang, J.T. Yates, Jr, Chemical Reviews, 112, (2012), 5520-5551.
[64] H.S. Hafez, I.S. Yahia, G.B. Sakr, M.S.A. Abdel-Mottaleb, F. Yakuphanoglu,
Advances in Materials and Corrosion, 1, (2012), 8-13.
[65] Y. Cong, J. Zhang, F. Chen, M. Anpo, D. He, Journal of Physical Chemistry C, 111, (2007), 10618-10623.
[66] R. Dholam, N. Patel, M. Adami, A. Miotello, International journal of hydrogen
energy 34, (2009), 5337-5346.
[67] J. Lei, X. Li, W. Li, F. Sun, D. Lu, Y. Lin, J Solid State Electrochem, 16, (2012),
625-632.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top