1.Aik, C. L. and Jia, G., 2000, “Activated carbon prepared form oil palm stone by one-step CO2 activation for gaseous pollutant removal”, Carbon, vol. 38, pp. 1089-1097.
2.Ardelean, O., Blanita, G., Borodi, G., Mihet, M., Coros, M., Lupu D., 2012, “On the enhancement of hydrogen uptake by IRMOF-8 composites with Pt/carbon catalyst”, Int. J. Hydrogen Energy, vol. 37, pp. 7378–7384.
3.Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A.N., Conrad, E.H., First, P.N., Heer, W.A., 2006, “Electronic confinement and coherence in patterned epitaxial graphene”, Science, vol. 312, No.5777, pp.1191–1196.
4.Biniwalea, R. B., Rayalua S., Devottaa, S., Ichikawa, M., 2008, “Chemical hydrides:A solution to high capacity hydrogen storage and supply”, Int. J. Hydrogen Energy, vol. 33, pp. 360-365.
5.Carter, T. J. and Cornish, L. A., 2001, “Hydrogen in metals”, Eng. Fail. Anal., vol. 8, pp. 113-121.
6.Chambers, A., Park, C., Baker, R. T. K. and Rodriguez, N. M., 1998, “Hydrogen storage in graphite nanofiber”, J. Phys. Chem. B, vol. 102, pp. 4253-4256.
7.Chen, C.M., Zhang, Q., Yang, M.G., Huang, C.H., Yang, Y.G., Wang, M.Z., 2012, “Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors”, Carbon, vol. 50, pp.3572–3584.
8.Chen,C.H, Chung, T.Y., Shen, C.C., Yu, M.S., Tsao, C.S., Shi, G.N., Huang, C.C., Ger, M.D., Lee, W.L., 2013 ”Hydrogen storage performance in palladium-doped graphene/carbon composites” Int. J. Hydrogen Energy, vol. 38,9, pp. 3681-3688.
9.Cho, J., Gao, L., Tian, J., Cao, H., Wu, W., Yu, Q., Yitamben, E.N., Fisher, B., Guest, J.R., Chen, Y.P., Guisinger, N.P., 2011, “Atomic-scale investigation of graphene grown on Cu foil and the effects of thermal annealing”, ACS nano, vol. 5, No.5, pp.3607–3613.
10.Cho, S. K., Han, C. S., Park, C. N. and Akiba, E., 1999, “The hydrogen storage characteristics of Ti-Cr-V alloys”, J. of Alloys and Compound, vol. 288, pp. 294-298.
11.Conner, W. C. and Falconer, J. L., 1995, “Spillover in heterogeneous catalysis”, Chem. Rev., vol. 95, pp. 759-788.
12.Contescu C. I., Benthem K. V., Li S., Bonifacio C. S., Pennycook S. J., Jena P., Gallego N. C., 2011, “Single Pd atoms in activated carbon fibers and their contribution to hydrogen storage”, Carbon, vol. 49, pp. 4050-4058.
13.Deming, W.E., Shupe, L.E., 1932 “Some Physical Properties of Compressed Gases, III. Hydrogen” Phys. Rev., vol. 40, pp. 848-859.
14.Dillon, A. C., 1997, “Storage of Hydrogen in Single-Walled Carbon Nanotubes ”, Nature, vol. 386, pp. 377-379.
15.Dubinin, M. M. and Plavnik, G. M., 1968, “Microporous structures of carbonaceous adsorbent”, Carbon, vol. 6, pp.183-192.
16.Fasolino, A., Los, J.H., Katsnelson, M.I., 2007, “Intrinsic ripples in graphene”, Nature materials, vol. 6, pp.858–861.
17.Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, D., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K., 2006 “Raman spectrum of graphene and graphene layers” Phy. Rev. Lett., vol. 97, pp. 187401-1-4.
18.Gadiou, R., Saadallah, S., Piquero, T., David, P., Parmentier, J., and Vix-Guterl, C., 2005, “The influence of textural properties on the adsorption of hydrogen on ordered nanostructured carbons”, Microporous Mesoporous Mater., vol. 79, pp. 121-128.
19.Gao, J-H., Fujita, D., Xu, M-S., Onishi, K., Miyamoto, S., 2010, “Unique synthesis of few-layer graphene films on carbon-doped Pt83Rh17 surface”, ACS nano, vol. 4, No. 2, pp.1026–1032.
20.Genma, R., Uchida, H. H., Okada, N. and Nishi, Y., 2003, “Hydrogen reactivity of Li-containing hydrogen storage material”, J. Alloys Compd., vol. 356-357, pp. 358-362.
21.Ghosh, A., Subrahmanyam, K.S., Krishna, K.S., Datta, S., Govindaraj, A, Pati, S.K., Rao, C.H.R., 2008 “Uptake of H2 and CO2 by graphene” J Phys Chem C., vol 112,pp.15704-15707.
22.Grosvenor, A.P., Biesinger, M.C., Smart, R.St.C., McIntyre, N.S., 2006 “New interpretations of XPS spectra of nickel metal and oxide” Surface. SCI., vol. 600, pp. 1771-1779.
23.Hamaed, A., Trudeau, M., Antonelli, D. M., 2008, “H2 storage materials (22 KJ/mol) using organometallic Ti fragments as sigma-H2 binding sites.”, J Am Chem Soc, vol. 130, pp. 6992-6999.
24.Hirscher, M., Panella, B., Schmitz, B., 2010, “Metal-organic frameworks for hydrogen storage”, Microporous Mesoporous Mater., vol. 129, pp. 335–339.
25.Hong, K., 2001, “The development of hydrogen storage alloys and the progress of nickel hydride batteries”, J. Alloys Compd., vol. 321, pp. 307-313.
26.Hsu, S. E., Beibutian, V. M. and Yeh, M. T., 2002, “Preparation of hydrogen storage alloys for application of hydrogen storage and transportation”, J. Alloys Compd., vol. 330-332, pp. 882-885.
27.Huang, C.C., Li, Y.H., Wang, Y.W., Chen, C.H., 2013 “Hydrogen storage in cobalt-embedded order mesoporous carbon” Int. J. Hydrogen Energy, vol. 38, pp. 3994-4002.
28.Huang, C.C., Pu, N.W., Wang, C.A., Huang, J.C., Sung, Y., Ger, M.D., 2011 “Hydrogen storage in graphene decorated with Pd and Pt nano-particles using an electroless deposition technique” Sep. Purif. Technol., vol. 82, pp.210-215.
29.Hummers, W.S., Offeman,R.E., 1958 “Preparation of Graphitic Oxide” J. Am. Chem. Soc., vol. 80(6), pp. 1339-1339.
30.Jin, Z., Sun, Z., Simpson, J., O’Neill, J., Parilla, P.A., Li, Y., Stadie, N., Ahn, C.C., Kittrell, C., Tour, J.M., 2010 “Solution-phase systhesis of heteroatom-substituted carbon scaffolds foe hydrogen storage” J. Am. Chem. Soc., vol. 132, pp.15246-15254.
31.Kim, H.S., Lee, H., Han, K.S., Kim, J.H., Song, M.S., Park, M.S., Lee, J.Y., Kang, J.K., 2005 “Hydrogen storage in Ni nanoparticle-dispersed multi-walled carbon nanotubes” J. Phys. Chem. B, vol 109,pp.8983-8986.
32.Korai, Y., Mochida, I., Shirahama, M., Kawano, S. and Hada, T., 2000, “Removal of SOx and NOx over activated carbon fibers”, Carbon, vol. 38, pp. 227-239.
33.Lachawiec, A.J., Qi, J.G., Yang, R.T., 2005 “Hydrogen storage in nanostructured carbons by spillover: bridge-building enhancement” Langmuir, vol. 21, pp. 11418-11424.
34.Lina, P., Zhu, X., Liang, S., Li, Z., Yang, W., Wang, H., 2010 “Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries” Electrochim. Acta, vol. 55,9, pp. 3909-3914..
35.Loh, K. P., Bao, Q., Eda, G., Chhowalla, M., 2010, “Graphene oxide as a chemically tunable platform for optical applications”, Nature Chem., vol. 2, pp.1015–1024.
36.Lueking, A. D. and Yang, R. T., 2004, “Hydrogen spillover to enhance hydrogen storage- study of the effect of carbon physicochemical properties”, Appl. Catal., A, vol. 265, pp. 259-268.
37.Luo, J., Xu, H., Liu, Y., Zhao, Y., Daemen, L.L., Brown, C., Timofeeva, T.V., Ma, S., Zhou, H.C., 2008 “Hydrogen adsorption in a highly stable porous rare-earth metal-organic framework:Sorption properties and neutron diffraction studies”, J. Am. Chem. Soc., vol 130(30), pp.9626-9627
38.Luzan, S. M. and Talyzin, A. V., 2010, “Hydrogen adsorption in Pt catalyst/MOF-5 materials”, Microporous Mesoporous Mater., vol. 135, pp. 201-205.
39.Ma, L.P., Wu, Z.S., Li, J., Wu, E.D., Ren, W.C., Cheng, H.M., 2009 “Hydrogen adsorption behavior of graphene above critical temperature” Int. J. Hydrogen Energy, vol 34, pp.2329-32.
40.McAllister, M.J., Li, J-L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., Herrera-Alonso, M., Milius, D.L., Car, R., Prud’homme, R.K., Aksay, I.A., 2007, “Single sheet functionalized graphene by oxidation and thermal expansion of graphite”, Chem. Mater., vol. 19, pp.4396–4404.
41.Meyer, J C., Geim A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., Roth, S., 2007, “The structure of suspended graphene sheets”, Nature, vol. 446, pp.60–63
42.Moulder, J.F., Stickle,W.F., Sobol, P.E., Bomben, K.D., 1995 “Handbook of X Ray Photoelectron Spectroscopy”.
43.Navarro, C., Weitz, R.T., Bittner, A.M., Scolari, M., Mews, A., Burghard, M., Kern, K., 2007, “Electronic transport properties of individual chemically reduced graphene oxide sheets”, Nano Lett., vol. 7, No.11, pp.3499–3503.
44.Pang, J.; Hampsey, J. E., Wu, Z., Hu, Q., Lu, Y., 2004, “Hydrogen adsorption in mesoporous carbons”, Appl. Phys. Lett., vol. 85, pp. 21.
45.Parambhath, V.B., Nagar, R., Sethupathi, K., Ramaprabhu, S., 2011 “Investigation of spillover mechanism in Palladium decorated hydrogen enfoliated functionalized graphene” J. Phys. Chem. C, vol. 115, pp.15679-15685.
46.Park, H.J., Meyer, J., Roth, S., Skakalova, V., 2010, “Growth and properties of few-layer graphene prepared by chemical vapor deposition”, Carbon, vol. 48, No. 4, pp.1088–1094.
47.Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., Kong, J., 2009, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition”, Nano Lett., vol. 9, No.1, pp.30–35.
48.Ruthven, D. M., 1984, “Principles of Adsorption and Adsorption Process”, Wiley, New York, USA.
49.Ryoo, R., Joo, S. H., and Jun, S., 1999, “Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation”, J. Phys. Chem. B, vol. 103 , pp. 7743-7746.
50.Sankaran, M., Viswanathan, B., 2007, “Hydrogen storage in boron substituted carbon nanotubes”, Carbon, vol. 45, pp. 1628–1635.
51.Satyapal, S., Petrovic, J., Read, C., Thomas, G., Ordaz, G., 2007 “The U.S. Department of Energy’s National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements” Catalysis Today, vol. 120, pp. 246-256.
52.Sigal. A., Rojas, M.I., Leiva, E.P.M., 2011“Interferents for hydrogen storage on a graphene sheet decorated with nickel: A DFT study” Int. J. Hydrogen Energy, vol. 36, pp.3537-3546.
53.Srinivas, G., Skipper, N. and Ellerby, M., 2010, “Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity”, Carbon, vol. 48, pp. 630-635.
54.Sutter, P., Hybertsen, M.S., Sadowski, J.T., Sutter, E., 2009, “Electronic structure of few-layer epitaxial graphene on Ru(0001)”, Nano Lett., vol. 9, No.7, pp.2654–2660.
55.Wang, H., Gao, Q., Hu, J., 2009,“High hydrogen storage capacity of porous carbon prepared by using activated carbon”, J. Am. Chem. Soc., vol. 35, pp.7016-7022.
56.Wang, L. and Yang, R. T., 2008, “New sorbents for hydrogen storage by hydrogen spillover – a review”, Energ Environ Sci., vol. 1, pp. 268-279.
57.Wang, L., Lee, K., Sun, Y. Y., Lucking, M., Chen, Z., Zhao, J. J., Zhang, S. B., 2009, “Graphene Oxide as an Ideal Substrate for Hydrogen Storage”, ACS nano, Vol. 3, pp. 2995–3000.
58.Wang, L., Yang, R.T., 2011 “Molecular hydrogen and spiltover hydrogen storage on high surface area carbon sorbents” Carbon., vol. 50, pp. 3134-3140.
59.Wang, X., Li, N., Webb, J.A., Pfefferle, J.D., 2009 “Haller GL. Effect of surface oxygen containing groups on the catalytic activity of multi-walled carbon nanotube supported Pt catalyst” Appl. Catal. B: Environ., vol. 101, pp. 21-30.
60.Wang, Z., Yang, F.H., Yang, R.T., 2010 “Enhanced hydrogen spillover on carbon surface modified by oxygen plasma” J. Phys. Chem. C, vol. 114, pp. 1601-1609.
61.Wu, Z.S., Ren,W., Gao, L., Liu, B., Jiang, C., Cheng, H.M., 2008 “Synthesis of high-quality graphene with a pre-determined number of layers” Carbon., vol. 47, pp. 493-499.
62.Xia, K., Gao, Q., Song, S., Wu, J., Gao, L., 2008 “CO2 activation of ordered porous CMK-1 for hydrogen storage”, Int. J. Hydrogen Energy, vol. 33, pp.116-123
63.Yan, J., Liu, J., Fan, Z., Wei, T., Zhang, L., 2012, “High-performance supercapacitor electrodes based on highly corrugated graphene sheets”, Carbon, vol. 50, pp.2179–2188.
64.Yan, J., Wei, T., Shao, B., Fan, Z., Qian, W., Zhang, M., Wei, F., 2010a, “Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance”, Carbon, vol. 48, pp.487–493.
65.Yuan, G.D., Zhang, W.J., Yang, Y., Tang, Y.B., Li, Y.Q., Wang, J.X., Meng, X.M. He, Z.B. Wu, C.M.L., Bello, I., Lee, C.S., Lee, S.T., 2009, “Graphene sheets via microwave chemical vapor deposition”, Chem. Phys. Lett., vol. 467, No.4-6, pp.361–364.
66.Zhang, H., Fu, Q., Cui, Y., Tan, D., Bao, X., 2009, “Growth mechanism of graphene on Ru(0001) and O2 adsorption on the graphene/Ru(0001) surface”, J. Phys. Chem. C, vol. 113, No.19, pp.8296–8301.
67.Zhao, B., Liu, P., Jiang, Y., Pan, D., Tao, H., Song, J., Fang, T., Xu, W., 2012, “Supercapacitor performances of thermally reduced graphene oxide”, J. Power Sources, vol. 198, pp.423–427.
68.Zhou, L., Zhou, Y., Sun, Y., 2004, “A comparative study of hydrogen adsorption on superactivated carbon versus carbon nanotubes”, Int. J. Hydrogen Energy, vol. 29, pp. 475–479.
69.Zielinski, M., Wojcieszak,R., Monteverdi, S., Mercy, M., Bettahar, M.M., 2007 “Hydorgen storage in nickel catalysts supported on activated carbon” Int. J. Hydrogen Energy, vol. 32, pp. 1024-1032.
70.王彥文,2012,過渡金屬預浸染中孔碳材及其儲氫研究,國立雲林科技大學化學工程與材料工程系碩士論文。71.朱筱鈞,2009,有序中孔碳材改質及其儲氫研究,國立雲林科技大學化學工程與材料工程系碩士論文。72.何鈞筌,2012,以中孔碳材為電吸附劑電吸附水中微量銅離子,國立雲林科技大學化學工程與材料工程系碩士論文。73.李宜樺,2011,含過渡金屬有序中孔碳材儲氫研究,國立雲林科技大學化學工程與材料工程系碩士論文。74.徐僖壕,2012,以含鐵有序中孔碳材移除水中微量鉻和鉬離子,國立雲林科技大學化學工程與材料工程系碩士論文。75.郭信良等編著,2009, “石墨烯的發展與應用(上)” ,工業材料雜誌,274期,頁119~122。
76.陳秀湄,2008,以荔枝木製備活性碳及其儲氫研究,國立雲林科技大學化學工程與材料工程系碩士論文。77.陳冠銘,2012,表面修飾石墨烯薄片及其在超級電容器之應用,國立雲林科技大學化學工程與材料工程系碩士論文。78.陳建宏,2008,改質多層奈米碳管儲氫之研究,國立雲林科技大學工程科技研究所博士論文。79.黃志欽,2010,活性碳改質及其儲氫研究,國立雲林科技大學化學工程與材料工程系碩士論文。80.鄭襄君,2009,有序中孔碳材合成及其吸附應用,國立雲林科技大學化學工程與材料工程系碩士論文。