(3.238.249.17) 您好!臺灣時間:2021/04/13 17:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳盈佑
研究生(外文):Ying-yu Chen
論文名稱:以過渡金屬奈米粒子修飾石墨烯製備及其儲氫研究
論文名稱(外文):Study on synthesis of transition-metal nanoparticle decorated graphene and its application for hydrogen storage
指導教授:黃振家黃振家引用關係
指導教授(外文):Chen-chia Huang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:104
中文關鍵詞:氫溢流儲氫石墨烯
外文關鍵詞:hydrogen spilloverhydrogen storagegraphene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:272
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本研究以氧化石墨經過熱還原膨脹法製備出石墨烯(GNS),再以不同濃度的檸檬酸螯合過渡金屬鎳或鈷離子加以修飾,以及將活化的介相碳微球(MCMB)與修飾後GNS進行物理混摻,作為儲氫材料。石墨烯的孔洞特性以氮氣吸附脫附儀量測;以X-射線光電子能譜儀及傅立葉轉換紅外線光譜儀分析表面官能基;以原子吸收光譜儀檢測石墨烯上金屬觸媒的含量;以粉末X光繞射儀、電子顯微鏡(FE-SEM與TEM)、高解析分析電子顯微鏡(HR-AEM)及拉曼光譜儀(Raman)分析石墨烯層間距變化、金屬晶體結構及表面型態。以體積法量測儲氫容量。

實驗結果顯示,過渡金屬鎳、鈷修飾石墨烯,對儲氫效能有正面的提升,證實過渡金屬具有產生氫溢流(hydrogen spillover)現象。以鎳觸媒所修飾的石墨烯,在常溫高壓(55 atm、RT)的吸附環境時,原始石墨烯(GNS)儲氫量為0.091 wt.%,5wt.% citric-Ni GNS儲氫量為0.16 wt.%,約提升75%。以鈷觸媒所修飾石墨烯,在常溫高壓(55 atm、RT)的吸附環境時,2wt.% citric-Co GNS儲氫量為0.147 wt.%,約提升62%。經物理混摻複合材料,在常溫高壓(55 atm、RT)的吸附環境下,鎳及鈷修飾的GNS-aMCMB複合材料(GM)仍保有氫溢流現象,但提升幅度並不高,分別僅8.5%及6.0%,且儲氫量低於aMCMB,其原因推測為aMCMB的球狀顆粒過大,石墨烯無法與aMCMB均勻混合,致氫原子不易溢流至二次受體作用所導致。
In this study, the graphene nanosheets (GNS) were prepared by thermal reduction of graphite oxide (GO), and then were decorated by adding different concentrations of citric acid chelated transition metal ions, such as nickel or cobalt. The modified GNS was physically mixed with activated mesophase carbon microbeads (aMCMB). The modified GNS and composites were used as hydrogen storage materials. The texture characteristics of GNS were determined by nitrogen adsorption analysis. The surface functional groups were determined by X-ray photoelectron spectrometry and Fourier transform infrared spectrometry. The metal contents were measured by an atomic absorption spectrometer. The morphology and crystal structures of GNS were observed by X-ray diffractometer and transmission electron microscope, field emission scanning electron microscope, ultrahigh resolution analytical electron microscope and Raman spectrometer. Hydrogen storage capacity of prepared GNS and composites was obtained by volumetric method.

Experimental results showed that the presence of Ni or Co on graphene enhanced hydrogen capacity of GNS by spillover effect. At room temperature (RT) and 55 atm, the hydrogen capacity (0.16 wt%) on the nickel- decorated graphene (5wt% citric-Ni GNS) demonstrated a 75% enhancement compared to that on the pristine graphene (GNS). The hydrogen uptake for the cobalt-decorated graphene (2wt% citric-Co GNS) was 0.147 wt%, which was a 62% enhancement compared to that of the pristine graphene(GNS). For modified GNS/aMCMB (GM) composites, the increases of hydrogen storage capacities of Ni or Co modified GM over on GM were 8.5% and 6.0%, respectively, which implied the spillover effect is retained. However, the hydrogen storage capacity of nickel and cobalt modified GM composite was less than that of the aMCMB. This is presumed that the aMCMB particles are too large, resulting graphene does not uniformly mixed with aMCMB and causing hydrogen atoms cannot spillover to secondary receptor.
摘要 i
Abstract ii
誌 謝 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章、緒論 1
第二章、文獻回顧 4
2.1 石墨 4
2.2 石墨烯 5
2.2.1 石墨烯的結構 7
2.2.2 石墨烯的特性 8
2.2.3 石墨烯的製備 9
2.2.3.1 機械剝離法 9
2.2.3.2 磊晶成長法(Epitaxial Growth) 9
2.2.3.3化學氣相沉積法(Chemical vapor deposition;CVD) 9
2.2.3.4 氧化石墨(graphite oxide; GO)化學還原及熱還原膨脹法 10
2.3 碳材基本特性 13
2.3.1 表面積(specific surface area) 13
2.3.2 孔洞結構(pore structure) 13
2.4 吸附及脫附原理 14
2.4.1 等溫吸附曲線 15
2.5 奈米碳材儲氫文獻回顧 17
2.5.1 奈米碳材 18
2.5.2 替代(Substitution)碳原子 20
2.5.3 氫氣溢流(Hydrogen spillover)現象影響 21
2.5.4 Kubas理論 24
第三章、實驗設備及方法 25
3.1 實驗材料與藥品 25
3.2 石墨烯製備 26
3.2.1 氧化石墨製備 26
3.2.2 石墨烯製備 27
3.3 石墨烯改質與混摻材料 28
3.3.1 過渡金屬修飾石墨烯製備 28
3.3.2 活化的MCMB與石墨烯的混摻材料 28
3.3.3 氫氣還原 28
3.4 儀器設備介紹 29
3.5 定體積儲氫量測 32
3.5.1 高壓常溫定體積儲氫 32
3.5.2 高壓常溫定體積儲氫實驗步驟 32
3.5.3 氦氣體積校正 33
3.6 實驗流程規劃 35
第四章、結果與討論 36
4.1 石墨烯基本結構性質檢測 36
4.1.1 粉末X光繞射儀(XRD)分析 36
4.1.2 電子顯微鏡分析(TEM及FE-SEM) 38
4.1.3 傅立葉轉換紅外光譜儀(FTIR) 41
4.1.4 顯微拉曼光譜儀(Microscopes Raman Spectrometer) 43
4.1.5 X射線光電子能譜儀(XPS) 45
4.2.金屬觸媒鎳修飾石墨烯基本結構性質檢測 51
4.2.1粉末X光繞射儀(XRD)分析 51
4.2.2 金屬觸媒鎳修飾石墨烯含量檢測 53
4.2.3高解析分析電子顯微鏡(HR-AEM) 54
4.2.4傅立葉轉換紅外光譜儀(FTIR) 59
4.2.5 顯微拉曼光譜儀(Microscopes Raman Spectrometer) 60
4.2.6 X射線光電子能譜儀(XPS) 62
4.2.7 氮氣吸附分析(Nitrogen Analysis) 66
4.3金屬觸媒鈷修飾石墨烯基本結構性質檢測 68
4.3.1粉末X光繞射儀(XRD)分析 68
4.3.2 金屬觸媒鈷修飾石墨烯含量檢測 69
4.3.3穿透式電子顯微鏡分析(TEM) 70
4.3.4 X射線光電子能譜儀(XPS) 73
4.3.5 氮氣吸附分析(Nitrogen Analysis) 76
4.4混摻材料基本結構性質檢測 78
4.4.1粉末X光繞射儀(XRD)分析 78
4.4.2 掃描式電子顯微鏡分析(FE-SEM) 80
4.4.3 氮氣吸附分析(Nitrogen Analysis) 82
4.5常溫高壓儲氫效能分析 84
4.5.1 純碳材儲氫效能分析 86
4.5.2 金屬觸媒鎳修飾石墨烯儲氫效能分析 88
4.5.3金屬觸媒鈷修飾石墨烯儲氫效能分析 91
4.5.4 混摻材料儲氫效能分析 94
第五章、結論 96
未來展望 98
參考文獻 99
1.Aik, C. L. and Jia, G., 2000, “Activated carbon prepared form oil palm stone by one-step CO2 activation for gaseous pollutant removal”, Carbon, vol. 38, pp. 1089-1097.
2.Ardelean, O., Blanita, G., Borodi, G., Mihet, M., Coros, M., Lupu D., 2012, “On the enhancement of hydrogen uptake by IRMOF-8 composites with Pt/carbon catalyst”, Int. J. Hydrogen Energy, vol. 37, pp. 7378–7384.
3.Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A.N., Conrad, E.H., First, P.N., Heer, W.A., 2006, “Electronic confinement and coherence in patterned epitaxial graphene”, Science, vol. 312, No.5777, pp.1191–1196.
4.Biniwalea, R. B., Rayalua S., Devottaa, S., Ichikawa, M., 2008, “Chemical hydrides:A solution to high capacity hydrogen storage and supply”, Int. J. Hydrogen Energy, vol. 33, pp. 360-365.
5.Carter, T. J. and Cornish, L. A., 2001, “Hydrogen in metals”, Eng. Fail. Anal., vol. 8, pp. 113-121.
6.Chambers, A., Park, C., Baker, R. T. K. and Rodriguez, N. M., 1998, “Hydrogen storage in graphite nanofiber”, J. Phys. Chem. B, vol. 102, pp. 4253-4256.
7.Chen, C.M., Zhang, Q., Yang, M.G., Huang, C.H., Yang, Y.G., Wang, M.Z., 2012, “Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors”, Carbon, vol. 50, pp.3572–3584.
8.Chen,C.H, Chung, T.Y., Shen, C.C., Yu, M.S., Tsao, C.S., Shi, G.N., Huang, C.C., Ger, M.D., Lee, W.L., 2013 ”Hydrogen storage performance in palladium-doped graphene/carbon composites” Int. J. Hydrogen Energy, vol. 38,9, pp. 3681-3688.
9.Cho, J., Gao, L., Tian, J., Cao, H., Wu, W., Yu, Q., Yitamben, E.N., Fisher, B., Guest, J.R., Chen, Y.P., Guisinger, N.P., 2011, “Atomic-scale investigation of graphene grown on Cu foil and the effects of thermal annealing”, ACS nano, vol. 5, No.5, pp.3607–3613.
10.Cho, S. K., Han, C. S., Park, C. N. and Akiba, E., 1999, “The hydrogen storage characteristics of Ti-Cr-V alloys”, J. of Alloys and Compound, vol. 288, pp. 294-298.
11.Conner, W. C. and Falconer, J. L., 1995, “Spillover in heterogeneous catalysis”, Chem. Rev., vol. 95, pp. 759-788.
12.Contescu C. I., Benthem K. V., Li S., Bonifacio C. S., Pennycook S. J., Jena P., Gallego N. C., 2011, “Single Pd atoms in activated carbon fibers and their contribution to hydrogen storage”, Carbon, vol. 49, pp. 4050-4058.
13.Deming, W.E., Shupe, L.E., 1932 “Some Physical Properties of Compressed Gases, III. Hydrogen” Phys. Rev., vol. 40, pp. 848-859.
14.Dillon, A. C., 1997, “Storage of Hydrogen in Single-Walled Carbon Nanotubes ”, Nature, vol. 386, pp. 377-379.
15.Dubinin, M. M. and Plavnik, G. M., 1968, “Microporous structures of carbonaceous adsorbent”, Carbon, vol. 6, pp.183-192.
16.Fasolino, A., Los, J.H., Katsnelson, M.I., 2007, “Intrinsic ripples in graphene”, Nature materials, vol. 6, pp.858–861.
17.Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, D., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K., 2006 “Raman spectrum of graphene and graphene layers” Phy. Rev. Lett., vol. 97, pp. 187401-1-4.
18.Gadiou, R., Saadallah, S., Piquero, T., David, P., Parmentier, J., and Vix-Guterl, C., 2005, “The influence of textural properties on the adsorption of hydrogen on ordered nanostructured carbons”, Microporous Mesoporous Mater., vol. 79, pp. 121-128.
19.Gao, J-H., Fujita, D., Xu, M-S., Onishi, K., Miyamoto, S., 2010, “Unique synthesis of few-layer graphene films on carbon-doped Pt83Rh17 surface”, ACS nano, vol. 4, No. 2, pp.1026–1032.
20.Genma, R., Uchida, H. H., Okada, N. and Nishi, Y., 2003, “Hydrogen reactivity of Li-containing hydrogen storage material”, J. Alloys Compd., vol. 356-357, pp. 358-362.
21.Ghosh, A., Subrahmanyam, K.S., Krishna, K.S., Datta, S., Govindaraj, A, Pati, S.K., Rao, C.H.R., 2008 “Uptake of H2 and CO2 by graphene” J Phys Chem C., vol 112,pp.15704-15707.
22.Grosvenor, A.P., Biesinger, M.C., Smart, R.St.C., McIntyre, N.S., 2006 “New interpretations of XPS spectra of nickel metal and oxide” Surface. SCI., vol. 600, pp. 1771-1779.
23.Hamaed, A., Trudeau, M., Antonelli, D. M., 2008, “H2 storage materials (22 KJ/mol) using organometallic Ti fragments as sigma-H2 binding sites.”, J Am Chem Soc, vol. 130, pp. 6992-6999.
24.Hirscher, M., Panella, B., Schmitz, B., 2010, “Metal-organic frameworks for hydrogen storage”, Microporous Mesoporous Mater., vol. 129, pp. 335–339.
25.Hong, K., 2001, “The development of hydrogen storage alloys and the progress of nickel hydride batteries”, J. Alloys Compd., vol. 321, pp. 307-313.
26.Hsu, S. E., Beibutian, V. M. and Yeh, M. T., 2002, “Preparation of hydrogen storage alloys for application of hydrogen storage and transportation”, J. Alloys Compd., vol. 330-332, pp. 882-885.
27.Huang, C.C., Li, Y.H., Wang, Y.W., Chen, C.H., 2013 “Hydrogen storage in cobalt-embedded order mesoporous carbon” Int. J. Hydrogen Energy, vol. 38, pp. 3994-4002.
28.Huang, C.C., Pu, N.W., Wang, C.A., Huang, J.C., Sung, Y., Ger, M.D., 2011 “Hydrogen storage in graphene decorated with Pd and Pt nano-particles using an electroless deposition technique” Sep. Purif. Technol., vol. 82, pp.210-215.
29.Hummers, W.S., Offeman,R.E., 1958 “Preparation of Graphitic Oxide” J. Am. Chem. Soc., vol. 80(6), pp. 1339-1339.
30.Jin, Z., Sun, Z., Simpson, J., O’Neill, J., Parilla, P.A., Li, Y., Stadie, N., Ahn, C.C., Kittrell, C., Tour, J.M., 2010 “Solution-phase systhesis of heteroatom-substituted carbon scaffolds foe hydrogen storage” J. Am. Chem. Soc., vol. 132, pp.15246-15254.
31.Kim, H.S., Lee, H., Han, K.S., Kim, J.H., Song, M.S., Park, M.S., Lee, J.Y., Kang, J.K., 2005 “Hydrogen storage in Ni nanoparticle-dispersed multi-walled carbon nanotubes” J. Phys. Chem. B, vol 109,pp.8983-8986.
32.Korai, Y., Mochida, I., Shirahama, M., Kawano, S. and Hada, T., 2000, “Removal of SOx and NOx over activated carbon fibers”, Carbon, vol. 38, pp. 227-239.
33.Lachawiec, A.J., Qi, J.G., Yang, R.T., 2005 “Hydrogen storage in nanostructured carbons by spillover: bridge-building enhancement” Langmuir, vol. 21, pp. 11418-11424.
34.Lina, P., Zhu, X., Liang, S., Li, Z., Yang, W., Wang, H., 2010 “Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries” Electrochim. Acta, vol. 55,9, pp. 3909-3914..
35.Loh, K. P., Bao, Q., Eda, G., Chhowalla, M., 2010, “Graphene oxide as a chemically tunable platform for optical applications”, Nature Chem., vol. 2, pp.1015–1024.
36.Lueking, A. D. and Yang, R. T., 2004, “Hydrogen spillover to enhance hydrogen storage- study of the effect of carbon physicochemical properties”, Appl. Catal., A, vol. 265, pp. 259-268.
37.Luo, J., Xu, H., Liu, Y., Zhao, Y., Daemen, L.L., Brown, C., Timofeeva, T.V., Ma, S., Zhou, H.C., 2008 “Hydrogen adsorption in a highly stable porous rare-earth metal-organic framework:Sorption properties and neutron diffraction studies”, J. Am. Chem. Soc., vol 130(30), pp.9626-9627
38.Luzan, S. M. and Talyzin, A. V., 2010, “Hydrogen adsorption in Pt catalyst/MOF-5 materials”, Microporous Mesoporous Mater., vol. 135, pp. 201-205.
39.Ma, L.P., Wu, Z.S., Li, J., Wu, E.D., Ren, W.C., Cheng, H.M., 2009 “Hydrogen adsorption behavior of graphene above critical temperature” Int. J. Hydrogen Energy, vol 34, pp.2329-32.
40.McAllister, M.J., Li, J-L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., Herrera-Alonso, M., Milius, D.L., Car, R., Prud’homme, R.K., Aksay, I.A., 2007, “Single sheet functionalized graphene by oxidation and thermal expansion of graphite”, Chem. Mater., vol. 19, pp.4396–4404.
41.Meyer, J C., Geim A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., Roth, S., 2007, “The structure of suspended graphene sheets”, Nature, vol. 446, pp.60–63
42.Moulder, J.F., Stickle,W.F., Sobol, P.E., Bomben, K.D., 1995 “Handbook of X Ray Photoelectron Spectroscopy”.
43.Navarro, C., Weitz, R.T., Bittner, A.M., Scolari, M., Mews, A., Burghard, M., Kern, K., 2007, “Electronic transport properties of individual chemically reduced graphene oxide sheets”, Nano Lett., vol. 7, No.11, pp.3499–3503.
44.Pang, J.; Hampsey, J. E., Wu, Z., Hu, Q., Lu, Y., 2004, “Hydrogen adsorption in mesoporous carbons”, Appl. Phys. Lett., vol. 85, pp. 21.
45.Parambhath, V.B., Nagar, R., Sethupathi, K., Ramaprabhu, S., 2011 “Investigation of spillover mechanism in Palladium decorated hydrogen enfoliated functionalized graphene” J. Phys. Chem. C, vol. 115, pp.15679-15685.
46.Park, H.J., Meyer, J., Roth, S., Skakalova, V., 2010, “Growth and properties of few-layer graphene prepared by chemical vapor deposition”, Carbon, vol. 48, No. 4, pp.1088–1094.
47.Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., Kong, J., 2009, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition”, Nano Lett., vol. 9, No.1, pp.30–35.
48.Ruthven, D. M., 1984, “Principles of Adsorption and Adsorption Process”, Wiley, New York, USA.
49.Ryoo, R., Joo, S. H., and Jun, S., 1999, “Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation”, J. Phys. Chem. B, vol. 103 , pp. 7743-7746.
50.Sankaran, M., Viswanathan, B., 2007, “Hydrogen storage in boron substituted carbon nanotubes”, Carbon, vol. 45, pp. 1628–1635.
51.Satyapal, S., Petrovic, J., Read, C., Thomas, G., Ordaz, G., 2007 “The U.S. Department of Energy’s National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements” Catalysis Today, vol. 120, pp. 246-256.
52.Sigal. A., Rojas, M.I., Leiva, E.P.M., 2011“Interferents for hydrogen storage on a graphene sheet decorated with nickel: A DFT study” Int. J. Hydrogen Energy, vol. 36, pp.3537-3546.
53.Srinivas, G., Skipper, N. and Ellerby, M., 2010, “Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity”, Carbon, vol. 48, pp. 630-635.
54.Sutter, P., Hybertsen, M.S., Sadowski, J.T., Sutter, E., 2009, “Electronic structure of few-layer epitaxial graphene on Ru(0001)”, Nano Lett., vol. 9, No.7, pp.2654–2660.
55.Wang, H., Gao, Q., Hu, J., 2009,“High hydrogen storage capacity of porous carbon prepared by using activated carbon”, J. Am. Chem. Soc., vol. 35, pp.7016-7022.
56.Wang, L. and Yang, R. T., 2008, “New sorbents for hydrogen storage by hydrogen spillover – a review”, Energ Environ Sci., vol. 1, pp. 268-279.
57.Wang, L., Lee, K., Sun, Y. Y., Lucking, M., Chen, Z., Zhao, J. J., Zhang, S. B., 2009, “Graphene Oxide as an Ideal Substrate for Hydrogen Storage”, ACS nano, Vol. 3, pp. 2995–3000.
58.Wang, L., Yang, R.T., 2011 “Molecular hydrogen and spiltover hydrogen storage on high surface area carbon sorbents” Carbon., vol. 50, pp. 3134-3140.
59.Wang, X., Li, N., Webb, J.A., Pfefferle, J.D., 2009 “Haller GL. Effect of surface oxygen containing groups on the catalytic activity of multi-walled carbon nanotube supported Pt catalyst” Appl. Catal. B: Environ., vol. 101, pp. 21-30.
60.Wang, Z., Yang, F.H., Yang, R.T., 2010 “Enhanced hydrogen spillover on carbon surface modified by oxygen plasma” J. Phys. Chem. C, vol. 114, pp. 1601-1609.
61.Wu, Z.S., Ren,W., Gao, L., Liu, B., Jiang, C., Cheng, H.M., 2008 “Synthesis of high-quality graphene with a pre-determined number of layers” Carbon., vol. 47, pp. 493-499.
62.Xia, K., Gao, Q., Song, S., Wu, J., Gao, L., 2008 “CO2 activation of ordered porous CMK-1 for hydrogen storage”, Int. J. Hydrogen Energy, vol. 33, pp.116-123
63.Yan, J., Liu, J., Fan, Z., Wei, T., Zhang, L., 2012, “High-performance supercapacitor electrodes based on highly corrugated graphene sheets”, Carbon, vol. 50, pp.2179–2188.
64.Yan, J., Wei, T., Shao, B., Fan, Z., Qian, W., Zhang, M., Wei, F., 2010a, “Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance”, Carbon, vol. 48, pp.487–493.
65.Yuan, G.D., Zhang, W.J., Yang, Y., Tang, Y.B., Li, Y.Q., Wang, J.X., Meng, X.M. He, Z.B. Wu, C.M.L., Bello, I., Lee, C.S., Lee, S.T., 2009, “Graphene sheets via microwave chemical vapor deposition”, Chem. Phys. Lett., vol. 467, No.4-6, pp.361–364.
66.Zhang, H., Fu, Q., Cui, Y., Tan, D., Bao, X., 2009, “Growth mechanism of graphene on Ru(0001) and O2 adsorption on the graphene/Ru(0001) surface”, J. Phys. Chem. C, vol. 113, No.19, pp.8296–8301.
67.Zhao, B., Liu, P., Jiang, Y., Pan, D., Tao, H., Song, J., Fang, T., Xu, W., 2012, “Supercapacitor performances of thermally reduced graphene oxide”, J. Power Sources, vol. 198, pp.423–427.
68.Zhou, L., Zhou, Y., Sun, Y., 2004, “A comparative study of hydrogen adsorption on superactivated carbon versus carbon nanotubes”, Int. J. Hydrogen Energy, vol. 29, pp. 475–479.
69.Zielinski, M., Wojcieszak,R., Monteverdi, S., Mercy, M., Bettahar, M.M., 2007 “Hydorgen storage in nickel catalysts supported on activated carbon” Int. J. Hydrogen Energy, vol. 32, pp. 1024-1032.
70.王彥文,2012,過渡金屬預浸染中孔碳材及其儲氫研究,國立雲林科技大學化學工程與材料工程系碩士論文。
71.朱筱鈞,2009,有序中孔碳材改質及其儲氫研究,國立雲林科技大學化學工程與材料工程系碩士論文。
72.何鈞筌,2012,以中孔碳材為電吸附劑電吸附水中微量銅離子,國立雲林科技大學化學工程與材料工程系碩士論文。
73.李宜樺,2011,含過渡金屬有序中孔碳材儲氫研究,國立雲林科技大學化學工程與材料工程系碩士論文。
74.徐僖壕,2012,以含鐵有序中孔碳材移除水中微量鉻和鉬離子,國立雲林科技大學化學工程與材料工程系碩士論文。
75.郭信良等編著,2009, “石墨烯的發展與應用(上)” ,工業材料雜誌,274期,頁119~122。
76.陳秀湄,2008,以荔枝木製備活性碳及其儲氫研究,國立雲林科技大學化學工程與材料工程系碩士論文。
77.陳冠銘,2012,表面修飾石墨烯薄片及其在超級電容器之應用,國立雲林科技大學化學工程與材料工程系碩士論文。
78.陳建宏,2008,改質多層奈米碳管儲氫之研究,國立雲林科技大學工程科技研究所博士論文。
79.黃志欽,2010,活性碳改質及其儲氫研究,國立雲林科技大學化學工程與材料工程系碩士論文。
80.鄭襄君,2009,有序中孔碳材合成及其吸附應用,國立雲林科技大學化學工程與材料工程系碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 吳佳煇、王澤惠、林以正(2004)。運動自我設限量表之探索性與驗證性因素分析。大專體育學刊,6,139-148頁。
2. 李依齡、馮麗花(2005)。完美主義與運動表現。大專體育,78,88-94頁。
3. 林俊廷、卓國雄(2011)。以社會學習的觀點看父母教養方式對學童運動選手害怕失敗的影響。成大體育學刊,43(2),43-55頁。
4. 卓國雄、盧俊宏(2005)。中文版表現失敗評估量表之修訂研究:探索性和驗證性因素分析。大專體育學刊,7(2),111-123頁。
5. 卓國雄、盧俊宏(2005)。害怕失敗動機之結構與深層意義。大專體育,76,99-105頁。
6. 卓國雄、盧俊宏(2005)。害怕失敗、知覺比賽重要性和年齡對運動攻擊意圖之區別分析。國立體育學院論叢,16(3),43-59頁。
7. 卓國雄、盧俊宏(2008)。學童選手運動表現害怕失敗評估發展之研究。教育學刊,30,167-192頁。
8. 陳瓊茶(2005)。大專運動員完美主義、目標取向及特質性焦慮對競技倦怠之相關與預測研究。大專體育學刊,7(1),43-59頁。
9. 黃郁婷、夏淑蓉(2005)。大專運重員完美主義與目標取向之相關研究。國立體育學院論叢,16(3),75-87頁。
10. 黃淑貞、張秀卿(2006)。女子競技體操選手害怕失敗動機與完美主義之相關研究。真理大學運動知識學報,4,80-87頁。
11. 盧俊宏(1990)。大專運動員運動競賽特質性焦慮之研究。體育學報,12,45-70頁。
12. 盧俊宏、曾慧桓、趙文其、黃瀅靜(1999)。完美主義概念與測驗初探。大專體育,43,43-51頁。
13. 藍嘉蘋、夏淑蓉(2005)。大專運動員完美主義、目標取向與自尊之研究-探索其可能的運動特質組群。國立體育學院論叢,17(3),85-97頁。
 
系統版面圖檔 系統版面圖檔