(18.206.187.91) 您好!臺灣時間:2021/05/19 01:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳宜伶
研究生(外文):Yi-Ling Chen
論文名稱:在缺血及缺氧狀態下芝麻素衍生物3-bis(3-methoxybenzyl)butane-1,4-diol保護離體細胞及SD 大鼠之影響
論文名稱(外文):3-bis(3-methoxybenzyl)butane-1,4-diol Protect neuron from Ischemia of SD rats and hypoxia damage in vitro
指導教授:侯建維侯建維引用關係
指導教授(外文):Chien-Wei Hou
學位類別:碩士
校院名稱:元培科技大學
系所名稱:生物技術研究所
學門:醫藥衛生學門
學類:其他醫藥衛生學類
論文種類:學術論文
畢業學年度:101
語文別:中文
論文頁數:96
中文關鍵詞:芝麻素衍生物-BBDBV-2 CellPC12 Cell缺氧 (hypoxia)自由基活性氧(ROS)MAPK
外文關鍵詞:BV-2cerebral ischemiahypoxianeuroprotectionsesamin
相關次數:
  • 被引用被引用:2
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在台灣,中風是國人的第三大死因,有很高的死亡率。主要的原因是腦組織因血管的栓塞、硬化而造成缺氧及缺血、缺葡萄糖進而造成神經死亡。許多文獻指出,中樞神經的損傷會進而產生自由基促使細胞造成更大的傷害;而抗氧化物能有效的減少自由基引起的細胞損傷。
芝麻含有很高的抗氧化成份,已有許多研究證明指出從芝麻種子萃取出的芝麻素(sesamin)含有木酚素(lignan),並且芝麻素含有抗發炎、神經保護…等功效。然而芝麻素並不具有通過血腦障壁的能力,所以並無法直接進入腦中。
微膠細胞(microglia)是一種腦部的巨噬細胞,存於腦中具有保護、偵測外來物侵襲的能力。然而當腦部缺血所造成的神經損傷會引起微膠細胞產生一氧化氮(NO)、活性氧(ROS)及細胞激素,這些自由基的釋放會因MAPK中的JNK、ERK、p38等參與進而造成更嚴重的神經損傷。
因此我們研究芝麻素衍生物(Sesamin derivative-3-bis (3-methoxybenzyl) butane-1,4-diol; BBD)在離體細胞模擬缺氧模式的情況下,是否具有降低氧化壓力所造成的傷害和其機制為何,並且進行動物實驗,來探討BBD是否在活體生物上具有保護神經的作用。
研究結果顯示,在缺氧缺葡萄糖時,芝麻素衍生物能有效降低微膠細胞之活性氧(ROS)、細胞激素(cytokine)、前列腺素、MAPK蛋白酵素的合成量及抑制細胞凋亡的作用。而在動物實驗中,BBD能有效降低大鼠腦動脈栓塞的栓塞面積,這些可能與清除自由基、降低脂質過氧化、活化超氧歧化酶有關。
而我們的實驗也證明芝麻素衍生物-BBD能在細胞缺氧、缺葡萄糖;動物腦栓塞的情況下具有神經保護之能力。
3-bis(3-methoxybenzyl)butane-1,4-diol Protect neuron from Ischemia of SD rats and hypoxia damage in vitro
Yi-Ling Chen
Advisor : Rolis Chien-Wei Hou
Department of Biotechnology Yuanpei University, Hsinchu, Taiwan

Abstract
Stroke is one of the leading causes of neuron death. Many reports have shown that antioxidants can scavenge free radical following hypoxic injury to neuronal cells. Sesamin is one of antioxidant. The neuroprotective ability of sesamin is due to its antioxidant and antiinflammation properties. We investigated the neuroprotective effect of 3-bis(3-methoxybenzyl)butane-1,4-diol (BBD), a sesamin derivative, in vivo and in vitro. Instead of enhancing free radical generation, BBD dose-dependently attenuated ROS, cytokine, PGE2 production when murine BV-2 microglia were subjected to hypoxia. BBD significantly reduced hypoxia-induced JNK MAPK, COX-2 and caspase-3 activation. The neuroprotective effect of BBD was further demonstrated in the focal cerebral ischemia model of Sprague–Dawley rat. Taken together, the inhibition of hypoxia -induced the cell damage , ROS generation, cytokine ,PGE2 and decrease ischemia- induced lipid peroxidation, increase SOD activities are cross related to the suppression of JNK MAPK, COX-2 and apoptosis factor caspase-3 signal pathway in vitro. These effects might help to protect neurons from the ischemic and hypoxic injury.
目錄
誌謝 I
縮寫對照表 III
摘 要 IV
Abstract VI
目錄 VII
圖目錄 XI
第一章 前言 1
1.1何謂腦中風 1
1.1.1腦中風症狀 2
1.1.2腦中風之生理及病理機制 4
1.1.3腦部缺血再灌流之影響ischemia-reperfusion 5
1.2 Sesamin derivative, 3-bis(3-methoxybenzyl) butane-1,4-diol;BBD 8
1.3 BV-2腦微膠細胞 9
1.3.1 Microglia cell激活後的影響 11
1.4 嗜鉻性神經細胞瘤細胞(pheochromocytoma cells, PC12 cells) 12
1.5 研究目的 14
1.6實驗流程 15
第二章 材料與方法 16
2.1實驗藥品與試劑套組Reagents 16
2.2儀器 Instrument 18
2.3 芝麻素衍生物sesamin derivative-BBD的製備: 19
2.4 細胞培養 Cell culture 20
2.4.1細胞培養條件Conditions of cell culture 20
2.4.2細胞活化與繼代 Cell activation and subculture 21
2.4.3細胞計數Cell count 22
2.4.4 細胞凍存Stoke 23
2.5細胞缺氧 Hypoxia 24
2.6細胞存活率試驗 MTT reduction assay (Cell viability) 25
2.7細胞毒性試驗 Lactate dehydrogenase (LDH) release assay (Cell cytotoxicity) 26
2.8清除活性氧化物能力試驗Reactive oxygen species (ROS) scavenging test 27
2.9細胞激素IL-1釋放量測定(Interleukin-1 production) 28
2.10細胞激素IL-6釋放量測定(Interleukin-6 production) 29
2.11前列腺素 E2 釋放量測定 Prostaglandin E2 (PGE2) 30
2.12鈣離子含量測定 Calcium content assay 32
2.13脂質過氧化物測定Lipid Hydroperoxide (LPO) Assay 33
2.14細胞蛋白質萃取製備Preparation of cell extracts 34
2.15西方墨點法 Western blotting 35
2.16動物實驗 (Animal experiment) 37
2.17動物實驗的藥品與配製(Animal experiment’s detail) 38
2.18動物實驗的步驟與方法(Animal experiment procedure) 39
2.19動物腦梗塞測定(Infarction assay) 40
2.20腦組織超氧歧化酶活性測定superoxide dismutase (SOD)Assay 42
2.21腦組織脂質過氧化物測定(LPO) Assay 44
2.22分析統計Statistical analysis 46
第三章 結果與討論 47
3.1芝麻素與芝麻素衍生物之結構 47
3.2預先處理芝麻素衍生物對缺血-再灌流損傷的大鼠之影響 48
3.2.1預先處理芝麻素衍生物對缺血-再灌流損傷的大鼠腦組織染色分析 48
3.2.2缺血─再灌流損傷引發大鼠腦梗塞之梗塞面積評估 50
3.2.3預先處理芝麻素衍生物-BBD對缺血-再灌流損傷的大鼠腦組織超氧歧化酶活性之影響 52
3.2.4預先處理芝麻素衍生物-BBD對缺血-再灌流損傷的大鼠腦組織脂質過氧化之形成 54
3.3不同濃度的芝麻素衍生物-BBD對BV-2 cell在缺氧狀態下所產生的存活率與細胞毒殺作用之影響 56
3.4 不同濃度的芝麻素衍生物-BBD對缺氧BV-2 cell的活性氧化物(Reactive oxygen species, ROS) 的清除能力 59
3.5探討芝麻素衍生物-BBD在缺氧壓力下誘導BV-2細胞之抗發炎活性 62
3.5.1 不同濃度的芝麻素衍生物-BBD對缺氧狀態下 BV-2 cell之IL-1、IL-6釋放量測定 62
3.5.2不同濃度的芝麻素衍生物-BBD降低缺氧壓力下BV-2 cell之PGE2生成量 65
3.6 不同濃度的芝麻素衍生物-BBD對PC12 cell在缺氧狀態下所產生的存活率與細胞毒殺作用之影響 67
3.7不同濃度芝麻素衍生物-BBD對缺氧PC12 cell的活性氧化物(Reactive oxygen species, ROS) 的清除能力 70
3.8 在缺氧的壓力下芝麻素衍生物-BBD對神經之影響 72
3.8.1不同濃度芝麻素衍生物-BBD對缺氧PC12 cell的鈣離子釋放之影響 72
3.8.2不同濃度芝麻素衍生物-BBD降低缺氧狀態下PC12 cell脂質過氧化之形成 74
3.9利用西方墨點法檢視不同濃度的芝麻素衍生物-BBD對缺氧狀態下細胞表現蛋白之影響 76
3.9.1西方墨點法檢視不同濃度的芝麻素衍生物-BBD在不同時間下對於缺氧狀態下BV-2 cell之MAPK (mitogen-activated protein kinase ) 、caspase-3與 COX-2 路徑的影響 76
3.9.2西方墨點法檢視不同濃度芝麻素衍生物-BBD在不同時間下對於缺氧狀態下PC12 cell之MAPK (mitogen-activated protein kinase ) 與 COX-2 路徑的影響 80
3.10 討論 81
第四章 結論 85
參考文獻 89


1.Ceulemans A-G, Zgavc T, Kooijman R, Idrissi S H, Sarre S, and Michotte Y. Mild hypothermia causes differential, time-dependent changes in cytokine expression and gliosis following endothelin-1-induced transient focal cerebral ischemia. J Neuroinflammation 2011, 8: 60.

2.Acalovschi D, Wiest T, Hartmann M, Farahmi M, Mansmann U, Auffarth GU, Grau AJ, Green FR, Grond-Ginsbach C, Schwaninger M. Multiple levels of regulation of the interleukin-6 system in stroke. Stroke 2003, 34(8):1864-1870.

3.Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA . Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 1990, 87:1620-1624.

4.Bromont C, Marie C, Bralet J. Increased lipid peroxidation in vulnerable brain regions after transient forebrain ischemia in rats. Stroke. 1989, 20:918–924.

5.Chang C-C and Chen C-J. Secular trend of mortality from cerebral infarction and cerebral hemorrhage in Taiwan 1974-1988. Stroke 1993, 24(2):212-218.

6.Caso JR, Moro MA, Lorenzo P, Lizasoain I, Leza JC. Involvement of IL-1β in acute stress induced worsening of cerebral ischemia in rats. Eur Neuropsychopharmacol 2007, 17(9):600-607.

7.Choi DW. Ischemia-induced neuronal apoptosis. Curr Opin Neurobiol 1996, 6:667-672.

8.Cowley S, Paterson H, Kemp P, Marshall CJ. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 1994, 77(6):841-852.

9.Cai F, Li C-R, Wu J-L, Chen J-G, Liu C, Min Q, Yu W, Ouyang C-H, and Chen J-H. Theaflavin Ameliorates Cerebral Ischemia-Reperfusion Injury in Rats Through Its Anti-Inflammatory Effect and Modulation of STAT-1.Mediators Inflamm. 2006, 30490 (5):1-9

10.Cheng F-C, Jinn T-R, Hou R C-W, Tzen T.C J. Neuroprotective Effects of Sesamin and Sesamolin on Gerbil Brain in Cerebral Ischemia. International journal of Biomedical science 2006,2 (3):284-288

11.Durukan A, Tatlisumak T. Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav 2007, 87(1):179-197.

12.Doyle KP, Simon RP, Stenzel-Poore MP. Mechanisms of ischemic brain damage. Neuropharmacology 2008; 55(3):310-318.


13.Drubin DG, Feinstein SC, Shooter EM, Kirschner MW. Nerve growth factor-induced neurite outgrowth in PC12 cells involves the coordinate induction of microtubule assembly and assembly-promoting factors. J Cell Biol 1985, 101:1799-1807.

14.Freeman BA, Crapo JD. Biology of disease: free radicals and tissue injury. Lab Invest 1982, 47:412-426.

15.Fisher M, Schaebitz W. An overview of acute stroke therapy: past, present, and future. Arch Intern Med 2000,160(21):3196-3206.


16.Gary Fiskum, Anne N Murphy and M Flint Beal. Mitochondria in Neurodegeneration: Acute Ischemia and Chronic Neurodegenerative Diseases.Journal of Cerebral Blood Flow &; Metabolism1999,19:351–369



17.Gotoh Y, Nishida E, Yamashita T, Hoshi M, Kawakami M, Sakai H. Microtubule-associated-protein (MAP) kinase activated by nerve growth factor and epidermal growth factor in PC12 cells. Identity with the mitogen-activated MAP kinase of fibroblastic cells. Eur J Biochem 1990, 193(3):661-669

18.Gartshore, G., J. Patterson, and I.M. Macrae. Influence of ischemia and reperfusion on the course of brain tissue swelling and blood-brain barrier permeability in a rodent model of transient focal cerebral ischemia. Exp Neurol, 1997, 147(2): 353-60.


19.Ginsberg M D and Busto R. Rodent models of cerebral ischemia. Stroke. 1989, 20:1627-1642

20.Huang J, Upadhyay UM, Tamargo RJ. Inflammation in stroke and focal cerebral ischemia. Surg Neurol 2006, 66(3):232-245.

21.Hwang SL, Yen GC. Neuroprotective effects of the citrus flavanones against H2O2-induced cytotoxicity in PC12 cells. J Agric Food Chem 2008, 56(3):859-64.

22.Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 1994, 265:1883-1885.

23.Hou R C-W, Chen H-L, Tzen J T-C and Jeng K-C G. Effect of sesame antioxidants on LPS-induced NO production by BV2 microglial cells. Neuroreport 2003, 6 (14):1815-1819.

24.Hou R C-W, Huang H-M, Tzen J TC, Jeng K-C G. Protective Effects of Sesamin and Sesamolin on Hypoxic Neuronal and PC12 Cells.Journal of Neuroscience Research 2003, 74:123–133.

25.Hou R C-W, Wu C-C , Yang C-H , K C G. Jeng. Protective effects of sesamin and sesamolin on murine BV-2 microglia cell line under hypoxia. Neuroscience Letters 2004, 367:10–13.

26.Hou R C-W, Chen Y-S, Chen C-H, Chen Y-H and Jeng K-C G, Protective effect of 1,2,4-benzenetriol on LPS-induced NO production by BV2 microglial cells. Journal of Biomedical Science 2006, 13:89–99

27.Huang HM, Ou HC, Chen HL, Hou RC, Jeng KC. Protective Effect of -Keto-ß-Methyl-n-Valeric Acid on BV-2 Microglia under Hypoxia or Oxidative Stress .Ann NY Acad Sci 2005, 1042: 272-278.

28.Hughes FJ, Buttery LD, Hukkanen MV, O'Donnell A, Maclouf J, Polak JM. Cytokine-induced prostaglandin E2 synthesis and cyclooxygenase-2 activity are regulated both by a nitric oxide-dependent and -independent mechanism in rat osteoblasts in vitro. J Biol Chem 1999, 274(3):1776-1782.

29.Iadecola C, Ross ME. Molecular pathology of cerebral ischemia: delayed gene expression and strategies for neuroprotection. Ann N Y Acad Sci 1997, 835:203-217.

30.Ikeda M , Sugiyama T, Wallace CS, Gompf H S, Yoshioka T, Miyawaki A and Allen C N. Circadian dynamics of cytosolic and nuclear Ca2+ in single suprachiasmatic nucleus neurons. Neuron April 2003, 38( 2):253-263.

31.Krajewski S, Krajewska M, Ellerby LM, Welsh K, Xie Z, Deveraux QL, Salvesen GS, Bredesen DE, Rosenthal RE, Fiskum G, Reed JC. Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc Natl Acad Sci U S A 1999, 96:5752-5757.

32.Hermes A. Kontos.Oxygen Radicals in Cerebral Ischemia
The 2001 Willis Lecture. Stroke. 2001, 32: 2712-2716

33.Kimura S, Zhang G-X, Nishiyama A, Shokoji T, Yao L, Fan Y-Y, Rahman M, Suzuki T, Maeta H, Abe Y. Role of NAD(P)H Oxidase- and Mitochondria-Derived Reactive Oxygen Species in Cardioprotection of Ischemic Reperfusion Injury by Angiotensin II. Hypertension. 2005 ,45(5):860-866
34.Lakhan SE, Kirchgessner A, Hofer M. Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med 2009, 7:97-107

35.Velly, Lionel J. M.D., Guillet, Benjamin A. Ph.D., Masmejean, Frederique M., Nieoullon, André L. Ph.D., Bruder, Nicolas J. M.D., Gouin, François M. M.D., Pisano, Pascale M. Ph.D. Neuroprotective effects of propofol in a model of ischemic cortical cell cultures: role of glutamate and its transporters. Anesthesiology 2003,99(2):368-375.

36.Liou KT, Lin SM, Huang SS, Chih CL, Tsai SK. Honokiol ameliorates cerebral infarction from ischemia-reperfusion injury in rats. Planta Med 2003, 69:130-134.

37.Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 2003, 4(5):399-415.

38.Liu D. The roles of free radicals in amyotrophic lateral sclerosis. J Mol Neurosci 1996, 7(3):159-167.

39.Moore KL, Dalley AR. Clinically Oriented Anatomy, 4th Ed, Taylor C (Ed)

40.Mergenthaler P, Dirnagl U, Meisel A. Pathophysiology of stroke: lessons from animal models. Metab Brain Dis 2004, 19(3-4):151-167.

41.Matsushita K, Matsuyama T, Kitagawa K, Matsumoto M, Yanagihara T, Sugita M. Alterations of Bcl-2 family proteins precede cytoskeletal proteolysis in the penumbra, but not in infarct centres following focal cerebral ischemia in mice. Neuroscience 1998, 83:439-448.

42.Mayr M, Metzler B, Chung YL, McGregor E, Mayr U, Troy H, Hu Y, Leitges M, Pachinger O, Griffiths JR, Dunn MJ, Xu Q. Ischemic preconditioning exaggerates cardiac damage in PKC-delta null mice. Am J Physiol Heart Circ Physiol 2004,287: 946-956.

43.Maier CM and Chan PH. Role of superoxide dismutases in oxidative damage and neurodegenerative disorders. Neuroscientist 2002, 8(4):323-334.

44.Kawashima M, MatsushimaT, and Sasaki T. Surgical strategy for distal anterior cerebral artery aneurysms: microsurgical anatomy. Journal of Neurosurgery 2003, 99(3 ): 517-525

45.Nishida Y, Matsuo H, Matsubara T, Ueno K, Kotoo Y, Oda H, Sugiyama A, Matsuno Y, Ohno M, Mori S, et al. Clinical value of PMN elastase activity before reperfusion therapy in acute myocardial infarction: comparison with clinical characteristics, reperfusion events and myocardial damage. Kokyu To Junkan 1992, 40:917-922.

46.Namura S, Zhu J, Fink K, Endres M, Srinivasan A, Tomaselli KJ, Yuan J, Moskowitz MA. Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci 1998,18:3659-3668.

47.Ouyang YB, Tan Y, Comb M, Liu CL, Martone ME, Siesjo BK, Hu BR. Survival- and death-promoting events after transient cerebral ischemia: phosphorylation of Akt, release of cytochrome C and activation of caspase-like proteases. J Cereb Blood Flow Metab 1999,19:1126-1135.

48.Jia QI, Hong Z-Y, Xin H, and Zhu Y Z. Neuroprotective Effects of Leonurine on Ischemia/Reperfusion-Induced Mitochondrial Dysfunctions in Rat Cerebral Cortex. Biol. Pharm. Bull 2010; 33(12) 1958-1964.
R

49.Ryan M.McAdams and Sandra E. Juul. The Role of Cytokines and Inflammatory Cells in Perinatal Brain Injury. Neurol Res Int.2012:581484

50.Shibata N, Kobayashi M. The role for oxidative stress in neurodegenerative diseases. Brain Nerve 2008, 60(2):157-170

51.Shinoura N, Satou R, Yoshida Y, Asai A, Kirino T, Hamada H. Adenovirus-mediated transfer of Bcl-X(L) protects neuronal cells from Bax-induced apoptosis. Exp Cell Res 2000, 254:221-231.

52.Soriano MA, Sanz O, Ferrer I, and Planas AM. Cortical infarct volume is dependent on the ischemic reduction of perifocal cerebral blood flow in a three-vessel intraluminal MCA occlusion/reperfusion in the rat. Brain 1997, 747:273–278.

53.Shafer TJ, Atchison WD. Transmitter, ion channel and receptor properties of pheochromocytoma (PC12) cells: a model for neurotoxicological studies. Neurotoxicology 1991, 12(3):473-492.

54.Sugawara T, Chan PH. Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxid Redox Signal 2003,5(5):597-607.

55.Suk K, Kim SY, Leem K, Kim YO, Park SY, Hur J, Baek J, Lee KJ, Zheng HZ, Kim H. Neuroprotection by methanol extract of Uncaria rhynchophylla against global cerebral ischemia in rats. Life Sci. 2002,70(21):2467-2480.

56.Tarozzo G, Campanella M, Ghiani M, Bulfone A, Beltramo M. Expression of fractalkine and its receptor, CX3CR1, in response to ischaemia-reperfusion brain injury in the rat. Eur J Neurosci 2002, 15:1663-1668.

57.Vadim S. Ten and Anatoly Starkov. Hypoxic-Ischemic Injury in the Developing Brain: The Role of Reactive Oxygen Species Originating in Mitochondria. Neurol Res Int. 2012, 542976

58.Wang X, Yue TL, Young PR, Barone FC, Feuerstein GZ. Expression of interleukin-6, c-fos, and zif268 mRNAs in rat ischemic cortex. J Cereb Blood Flow Metab 1995, 15(1):166-171.

59.Yamasaki Y, Matsuura N, Shozuhara H, Onodera H, Itoyama Y, Kogure K. Interleukin-1 as a pathogenetic mediator of ischemic brain damage in rats. Stroke 1995, 269(4):676-680.


60.Tanaka Y, Fukumitsu H, Soumiya H, Yoshimura S, Iwama T, and Furukawa S. 2-Decenoic Acid Ethyl Ester, a Compound That Elicits Neurotrophin-like Intracellular Signals, Facilitating Functional Recovery from Cerebral Infarction in Mice. Int J Mol Sci 2012,13(4) 4968–4981.

61.Ye Z, Guo Q, Wang E, Shi M, Pan Y. Sevoflurane preconditioning induced delayed neuroprotection against focal cerebral ischemia in rats. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2009, 34(2):152-157.

62.Zauner A, Daugherty WP, Bullock MR, Warner DS. Brain oxygenation and energy metabolism: part I-biological function and pathophysiology.Neurosurgery 2002, 51: 289-301

63.Zhou S-S, He F, Chen A-h , Hao P-Y, Song X-D. Suppression of rat Frizzled-2 attenuates hypoxia/reoxygenation-induced Ca2+ accumulation in rat H9c2 cells. Elsevier B.V. 2012, 318(13):1480-1491

64.王雅蕙 (Yea-Hwey Wang) 國立陽明大學,藥理學研究所2006碩士論文。Taxifolin及Dimemorfan對腦缺血再灌注中風鼠大腦梗塞之保護作用及機轉探討。

65.鄭楚勳(Chu-Hsun Cheng) 朝陽科技大學,生物技術研究所2006碩士論文。結合神經移植與添加aFGF在老鼠脊髓全斷模型中發炎反應之影響 。

66.林毓姿(Yu Tzu Lin )元培科技大學,生物科技研究所2011碩士論文。鼠尾草酸保護在缺氧狀態下PC12細胞的研究。

67.廖家祥(Jia-Siang Liao)元培科技大學,生物科技研究所2012碩士論文。以小鼠微膠細胞BV-2研究多重亞甲基間隔脂肪酸的生物活性。
68.陳宇綮(Yu-Chi Chen) 國立陽明大學,生物藥學研究所2009碩士論文。探討由Aβ及其它阿滋海默氏症相關危險因子引發tau磷酸化之影響及其機制 。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 9.彭碧慧、黃秀梨,「一位末期腎病病人初次接受腹膜透析之護理經驗」,領導護理,11卷2期,民國99年,43 -53頁。
2. 12.黃見成、徐均宏、白瑞聰、王晴祺,「全身性紅斑狼瘡患者使用奎寧發生末期腎病/惡性腫瘤/中風/骨質疏鬆之相關性研究」,健康管理學刊,10卷2期,民國101年,178-188頁。
3. 9.彭碧慧、黃秀梨,「一位末期腎病病人初次接受腹膜透析之護理經驗」,領導護理,11卷2期,民國99年,43 -53頁。
4. 14.謝惠卿、黃芙蓉、侯君正,「狼瘡性腎炎合併末期腎病變」,腎臟與透析,23卷1期,民國100年,10-14頁。
5. 12.黃見成、徐均宏、白瑞聰、王晴祺,「全身性紅斑狼瘡患者使用奎寧發生末期腎病/惡性腫瘤/中風/骨質疏鬆之相關性研究」,健康管理學刊,10卷2期,民國101年,178-188頁。
6. 14.謝惠卿、黃芙蓉、侯君正,「狼瘡性腎炎合併末期腎病變」,腎臟與透析,23卷1期,民國100年,10-14頁。
7. 7.張德明,「全身性紅斑性狼瘡的治療」,健康世界,第224期,民國93年,80-84頁。
8. 8.張德明,「全身性紅斑性狼瘡的歷史觀」,健康世界,第209期,民國92年,93-95頁。
9. 7.張德明,「全身性紅斑性狼瘡的治療」,健康世界,第224期,民國93年,80-84頁。
10. 8.張德明,「全身性紅斑性狼瘡的歷史觀」,健康世界,第209期,民國92年,93-95頁。
11. 6.陳錦華、何玉瑛、林新茹、王曼蒂、林川雄、葉德豐,「探討腹膜透析病人對透析認知之差異與影響因素」,澄清醫護管理雜誌,8卷4期,民國101年,33 -41頁。
12. 6.陳錦華、何玉瑛、林新茹、王曼蒂、林川雄、葉德豐,「探討腹膜透析病人對透析認知之差異與影響因素」,澄清醫護管理雜誌,8卷4期,民國101年,33 -41頁。
13. 5.陳瑋昇、林孝義、黃德豐,「全身性紅斑性狼瘡腎炎治療的新進展」,內科學誌,20卷1期,民國98年,40-47頁。
14. 5.陳瑋昇、林孝義、黃德豐,「全身性紅斑性狼瘡腎炎治療的新進展」,內科學誌,20卷1期,民國98年,40-47頁。
15. 4.陳奎篤、陳建良、周康茹、方華章,「腎臟移植手術後的急性腎衰竭」,腎臟與透析, 24卷3期,民國101年,201 -208頁。