跳到主要內容

臺灣博碩士論文加值系統

(44.223.39.67) 您好!臺灣時間:2024/05/26 13:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾華益
研究生(外文):Hua-Yi Chung
論文名稱:蚊香燃煙所產生微粒相及氣相多環芳香烴排放特性
論文名稱(外文):Characteristics of Polycyclic Aromatic Hydrocarbon Emissions in the Particulate and Gas Phase from Smoldering Mosquito Coil
指導教授:楊慈定楊慈定引用關係
指導教授(外文):Tzu-Ting Yang
學位類別:碩士
校院名稱:元培科技大學
系所名稱:環境工程衛生研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
畢業學年度:101
語文別:中文
論文頁數:113
中文關鍵詞:多環芳香烴蚊香排放因子
外文關鍵詞:Polycyclic aromatic hydrocarbonsMosquito coilEmission factors
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1245
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的為探討蚊香原物料的原子氫碳比值對蚊香燃燒所產生微粒相與氣相多環芳香烴排放特性的影響,使用內裝37 mm石英濾紙的全粉塵採樣器連接XAD – 2吸附劑進行微粒與氣相PAHs採樣,採樣流量設定為1 L/min,持續10分鐘,樣本使用二氯甲烷進行萃取後,以氣相層析質譜儀分析微粒與氣相多環芳香烴含量。
結果顯示5種測試蚊香的原子氫碳比值範圍為1.23 – 1.57,蚊香燃燒所產生的總懸浮微粒質量排放因子範圍為28.17 – 78.72 mg/g,其所產生的氣相與微粒相多環芳香烴排放因子範圍分別為介於26139.80 – 35932.98與5735.22 – 13431.51 ng/g。5種測試蚊香燃燒所產生的氣相與微粒相總多環芳香烴分佈百分比範圍分別為70.26 – 83.70 %與16.30 – 29.74 %。5種測試蚊香燃燒所產生的總PAHs致癌毒性微粒相(203.82 – 797.76 ng/g)為氣相(26.27 – 36.07 ng/g)約6.92 – 25.08 倍。
環境相對溼度6.3 – 97.0 %與環境風速0.005 – 0.010 m/s條件範圍內,高相對溼度與低風速環境條件下,燃燒蚊香會產生較低的總多環芳香烴致癌排放因子。

The polycyclic aromatic hydrocarbon emissions in particulate and gas phases generated from smoldering mosquito coils containing various atomic H/C ratios were examined. A two-piece filter cassette mounted with a 37-mm quartz filter followed by a XAD–2 sorbent tube was applied to collect particulate and gaseous PAHs at a sampling flow rate of 1 L/min for 10 min. The samples were extracted with CH2Cl2 and then analyzed for PAHs by the GC/MS instrument.
Among the used mosquito coils, the atomic H/C ratio ranged from 1.23 to 1.57, yielding total mass, gaseous, and particulate PAH emission factors of 28.17 – 78.72 mg/g, 26139.80 – 35932.98 and 5735.22 – 13431.51 ng/g, respectively. The various partitions of PAHs in the gaseous and particulate phases were in the ranges, 70.26 – 83.70 % and 16.30 – 29.74 % for the utilized mosquito coils. While the carcinogenic potency of PAH emissions in the particulate phase (203.82 – 797.76 ng/g) was approximately 6.92 – 25.08 times higher than that of the gaseous phase (26.27 – 36.07 ng/g).
Burning mosquito coil with a high level of relative humidity and low surface velocity minimize the carcinogenic potency of polycyclic aromatic hydrocarbons.

誌 謝 I
摘 要 II
目 錄 IV
圖目錄 VII
表目錄 IX
第一章緒論 1
第二章文獻回顧 3
2.1 蚊香的基本組成 3
2.2 蚊香內添加的環境衛生用藥 3
2.3 蚊香驅蟲之特性 3
2.4 蚊香燃燒所產生的空氣污染物 3
2.5 蚊香煙霧對健康的危害 4
2.6多環芳香烴的簡介 4
2.7多環芳香烴的物化特性 5
2.8多環芳香烴的健康危害 5
2.9多環芳香烴的特性比值 5
第三章研究方法 7
3.1 蚊香測試燃燒系統 7
3.2 溫度與相對溼度控制系統 7
3.3 選擇蚊香與燃燒條件 7
3.4 量測燃燒速率、溫度與相對溼度變化 8
3.5 微粒與氣相空氣污染物採樣 8
3.6 濾紙秤重方法 8
3.7 多環芳香烴化學分析 9
3.7.1 化學樣品分析前處理 9
3.7.2 分析儀器的操作條件 10
3.7.3 檢量線 10
3.7.4 方法偵測極限 11
3.7.5 萃取回收率試驗 11
3.7.6 空氣中微粒相與氣相PAHs濃度之計算 12
3.7.7 分析數據的處理 12
第四章 結果與討論 35
4.1 多環芳香烴分析品保品管 35
4.2 悶燒不同蚊香所產生的微粒與氣相多環芳香烴的影響 35
4.2.1 原物料的基本特性 35
4.2.2 環境條件控制的品保與品管 35
4.2.3 燃燒速率 35
4.2.4 微粒質量排放因子 36
4.2.5 微粒與氣相多環芳香烴排放率與排放因子 36
4.2.6 多環芳香烴微粒與氣相分布百分比 36
4.2.7 個別多環芳香烴濃度占總多環芳香烴分布百分比 37
4.2.8 多環芳香烴相當於Bap致癌毒性的排放率與排放因子 37
4.2.9 多環芳香烴相對於BaP致癌毒性之微粒與氣相分布百分比 37
4.2.10 個別多環芳香烴相當於BaP致癌毒性的濃度占總多環芳香烴相當於 BaP毒性之分布百分比 38
4.2.11 微粒與氣相多環芳香烴特徵比值 38
4.3 不同環境風速悶燒E蚊香所產生的微粒與氣相多環芳香烴的影響 39
4.3.1 環境條件控制的品保與品管 39
4.3.2 燃燒速率 39
4.3.3 微粒質量排放因子 39
4.3.4 微粒與氣相多環芳香烴排放率與排放因子 39
4.3.5 微粒與氣相多環芳香烴分布百分比 40
4.3.6 個別多環芳香烴濃度占總多環芳香烴的百分比 40
4.3.7 多環芳香烴相當於Bap致癌毒性的排放率與排放因子 40
4.3.8 多環芳香烴相對於BaP致癌毒性之微粒與氣相分布百分比 40
4.3.9 個別多環芳香烴相當於BaP致癌毒性的濃度占總多環芳香烴相當於BaP毒性的百分比 41
4.3.10 微粒與氣相多環芳香烴特徵比值 41
4.4 不同相對溼度悶燒E蚊香所產生的微粒與氣相多環芳香烴的影響 42
4.4.1 環境條件控制的品保與品管 42
4.4.2 燃燒速率 42
4.4.3 微粒質量排放因子 42
4.4.4 微粒與氣相多環芳香烴排放率與排放因子 42
4.4.5 微粒與氣相多環芳香烴分布百分比 43
4.4.6 個別多環芳香烴濃度占總多環芳香烴的百分比 43
4.4.7 多環芳香烴相當於Bap致癌毒性的排放率與排放因子 43
4.4.8 多環芳香烴相對於BaP致癌毒性之微粒與氣相分布百分比 43
4.4.9 個別多環芳香烴相當於BaP致癌毒性的濃度占總多環芳香烴相當於BaP毒性的百分比 44
4.4.10 微粒與氣相多環芳香烴特徵比值 44
第五章 結論與建議 97
第六章 參考文獻 98

1. Allen, J. O., Dookeran, N. M., Smith, K. A., Sarofim, A. F., Taghizadeh, K. and Lafleur, A., “Measurement of polycyclic aromatic hydrocarbons associated with size segregated atmospheric aerosols in Massachusetts, ” Environmental Science and Technology, No. 30, 1996, pp.1023-1031.
2. Azizi, B. H. H. and Henry R. L., “The effects of indoor environmental factors on respiratory illness in primary school children in Kuala Lumpur, ” International Journal of Epidemiology, Vol. 20, No. 1, 1991, pp.144-149.
3. Bi, X., Sheng, G., Peng, P., Chen, Y. and Fu, J., “Size distribution of n-alkanes and polycyclic aromatic hydrocarbons (PAHs) in urban and rural atmospheres of Guangzhou, China, ” Atmospheric Environment, No. 39, 2005, pp.477-487.
4. Bostrom, C. E., Gerde, P., Hanberg, A., Jernstrom, B., Johansson, C. and Kyrklund, T., “Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air, ” Environmental Health Perspectives, No. 110, 2002, pp.451-88.
5. Bui, Q. Q., Tran, M. B. and West, W. L., “A comparative study of the reproductive effects of methadone and benzo(a)pyrene in the pregnant and pseudopregnant rat, ” Toxicology, No. 42, 1986, pp.195-204.
6. Cecinato, A., Marino, F., Di Filippo, P., Lepore, L. and Possanzini, M., “Distribution of n-alkanes, polynuclear aromatic hydrocarbons and nitrated polynuclear aromatic hydrocarbons between fine and coarse fractions of inhalable atmospheric particulates, ” Journal of Chromatography A, No. 846, 1999, pp.255-264
7. Chang, J. Y. and Lin J. M., “Aliphatic Aldehydes and Allethrin in Mosquito-coil Smoke, ” Chemosphere, Vol. 36, No. 3, 1998, pp.617-624.
8. D'anna, A., Violi, A., D'alessio, A. and Sarofim, A. F., “Reaction pathway for nanoparticle formation in rich premixed flames, ” Combust Flame, No. 127, 2001, pp.1995-2003.
9. Davis, D. L., Bradlow, H. L., Wolff, M., Woodruff, T., Hoel, D. G. and AntonCulver, H., “Medical hypothesis: xenoestrogens as preventable causes of breast cancer, ” Environmental Health Perspectives, No. 101, 1993, pp.372-7.
10. Duan, J., Xi, B., Tan, J., Sheng, G. and Fu, J., “The differences of the size distribution of polycyclic aromatic hydrocarbons (PAHs) between urban and rural sites of Guangzhou, China, ” Atmospheric Research, No. 78, pp.190-203.
11. Duan, J., Xi, B., Tan, J., Sheng, G. and Fu, J., “Seasonal variation on size distribution and concentration of PAHs in Guangzhou city, China, ” Chemosphere, No. 67, pp.614-622.
12. Fagbule, D. and Ekanem, E. E., “Some environmental risk factors for childhood asthma: a case-control study, ” Annals of Tropical Paediatrics, Vol. 14, No. 1, 1994, pp.15-19.
13. Freeman, D. J., and Cattell, F. C., “Woodburning as a source of atmospheric polycyclic aromatic hydrocarbons, ” Environmental Science and Technology, No. 24, 1990, pp.1581-1585.
14. Giacalone, A., Gianguzza, A., Mannino, M. R., Orecchio, S. and Piazzese, D., “Polycyclic aromatic hydrocarbons in sediments of marine coastal lagoons in Messina,Italy: extraction and GC/MS analysis, distribution and sources, ” Polycyclic Aromatic Compounds, No. 24, 2004, pp.135-149.
15. Guinan, J., Charlesworth, M., Service, M. and Oliver, T., “Sources and geochemical constraints of polycyclic aromatic hydrocarbons (PAHs) in sediments and mussels of two northern Irish sea-loughs, ” Marine Pollution Bulletin, No. 42, 2001, pp.1073-1081.
16. Hien, T.T., Thanh, L.T., Kameda, T., Takenaka, N. and Bandow, H., “Distribution characteristics of polycyclic aromatic hydrocarbons with particle size in urban aerosols at the roadside in Ho Chi Minh City, Vietnam, ” Atmospheric Environment, No. 41, pp.1575-1586.
17. Hischenhuber, C. and Stijve, T., “Determination of benzo(a)pyrene in roasted coffee and coffee brews by HPLC with fluorescence detection, ” Deutsche Lebensmittel-Rundschau, No. 83, 1987, pp.1-4.
18. International Agency for Research on Cancer, Polynuclear aromatic compounds, part 1: chemical, environmental and experimental data. In: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol 32, 1983.
19. Jantan, I., Zaki, Z. M., Ahmad, A. R. and Ahmad, R., “Evaluation of smoke from mosquito coils containing Malaysian plants against AMes aegypti, ” Fitoterapia, No. 70, 1999, pp.237-243.
20. Kadota, T., Kohda, H., Miyata, M., Mizushima, K., Miyamoto, J. and Itoh, N., “Subacute Inhalation Study with Mosquito Coil Including o-cis/truns-Allethrin in Rats and Mice, ” Sumitomo Chemical Company, 1974, (unpublished paper).
21. Kim, E. J., Oh, J. E. and Chang, Y. S., “Effects of forest fire on the level and istribution of PCDDyFs and PAHs in soil, ” Science of the Total Environment, No. 311, 2003, pp.177-189.
22. Kittelson, D. B, “Engines and nanoparticles: a review, ” Journal of Aerosol Science, No. 29, 1998, pp.575-588.
23. Koo L. and Ho J., “Mosquito coil smoke and respiratory health among Hong Kong Chinese epidemiological studies, ” Indoor and Built Environ, No. 3, 1994, pp.304-310.
24. Lee, S. C. and Wang, B., “Characteristics of emissions of air pollutants from mosquito coils and candles burning in a large environmental chamber, ” Atmospheric Environment, No. 40, 2006, pp.2128-2138.
25. Li, C. S., Lin, W. H. and Jenq, F. T., “Characterization of outdoor submicron particles and selected combustion sources of indoor particles, ” Atmospheric Environment, Vol. 27, No. 4, 1993, pp.413-424.
26. Liu, W. K., Wong, M. H. and Mui, Y. L., “Toxic effects of mosquito coil (a mosquito repellent) smoke on rats, ” Toxicology Letter, No. 39, 1987, pp.223-230.
27. Liu, W. K. and Wong, M. H., “Toxic effects of mosquito coil (a mosquito repellent) smoke on rats, ”Toxicology Letters, 1987, pp.231-239.
28. Liu, W., Zhang, J., Hashim, J. H., Jalaludin, J., Hashim, Z. and Goldstein, B. D., “Mosquito Coil Emissions and Health Implications, ” Environmental Health Perspectives, Vol. 111, NO. 12, 2003, pp.1454-1460.
29. Luka, N. and Chandiwana, S. K., “Efficacy of mosquito coils containing 0.3% and 0.4% pyrethrins against An.gambiae sensu lato mosquitoes,” Central African Journal of Medicine, Vol. 44, No. 4, 1998, pp.104-7.
30. Ma, W. L., Li, Y. F., Qi, H., Sun, D. Z., Liu, L. Y. and Wang, D. G., “Seasonal variations of sources of polycyclic aromatic hydrocarbons (PAHs) to a northeastern urban city, China, ” Chemosphere, No. 79, 2010, pp.441-447.
31. Mannino, M. R. and Orecchio, S., “Polycyclic aromatic hydrocarbons (PAHs) in indoor dust matter of Palermo (Italy) area: extraction, GCeMS analysis, distribution and sources, ” Atmospheric Environment, No. 42, 2008, pp.1801-1817.
32. Miller, R.L., Garfinkel, R., Horton, M., Camann, D., Perera, F.P., Whyatt, R.M. and Kinney, P.L., “Polycyclic aromatic hydrocarbons, environmental tobacco smoke, and respiratory symptoms in an inner-city birth cohort, ” Chest, No. 126, pp.1071-1078.
33. Nisbet, C., and LaGcy, P., “Toxic Equivalency Factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs), ” Regulatory Toxicology and Pharmacology, No. 16, 1992, pp.290-300.
34. Oanh, N. T. K., Reutergardh, L. B., and Dung, N. T., “Emission of polycyclic aromatic hydrocarbons and particulate matter from domestic combustion of selected fuels. Environ, ” Environmental Science and Technology, No. 33, 1999, pp.2703-2709.
35. Occupational Health Services, Inc. "Pyrethrum." Material Safety Data Sheet. 1 April 1987. New York: OHS, Inc.
36. Orecchio, S., “Polycyclic aromatic hydrocarbons (PAHs) in indoor emission from decorative candles, ” Atmospheric Environment, No. 45, 2011, pp.1888-1895.
37. Oros, D. R., and Simoneit, B. R., “Identification and emission rates of molecular tracers in coal smoke particulate matter, ” Fuel, No. 79, 2000, pp.515-536.
38. Perera, F., Tang, W.Y., Herbstman, J., Tang, D., Levin, L., Miller, R. and Ho, S.M., “Relation of DNA methylation of 5’-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma, ” PLoS One, No. 4, PP.4488.
39. Ramesh, A. and Vijayalakshmi,A., “Monitoring of allethrin, deltamethrin, esbiothrin, prallethrin and transfluthrin in air during the use of household mosquito repellents, ” Journal of Environmental Monitoring, No. 3, 2001, pp.191.193.
40. Reynolds J. F., “Martindale, The Extra Pharmacopoeia, ” Pharmaceutical Press, No. 13, pp.1124.
41. Venkataraman, C., Thomas, S. and Kulkarni, P., “Size distributions of polycyclic aromatic hydrocarbons-gas/particle partitioning to urban aerosols, ” Journal of Aerosol Science, No. 30, 1999, pp.759-770.
42. Wallace, W. E., Keane, M. J., Murray, D. K., Chisholm, W. P., Maynard, A. D. and Ong, T., “Phospholipid lung surfactant and nanoparticle surface toxicity: Lessons from diesel soots and silicate dusts, ” Journal of Nanoparticle Research, No. 9, 2007, pp.23-38.
43. Wang, C. H., “Application of dosage technology on insecticides for house-hold uses, ” The Bulletin of Environmental Health, NO. 1, 1993, pp.23-37.
44. Wong, M. H., Yew, D. T. W. and Yip, S. W., “Inhaled toxicity of mosquito coils related to rodents, paper presented at International Meeting Human Ecology, ” Vienna, 1975.
45. Wu, S. P., Tao, S. and Liu, W. X., “Particle size distributions of polycyclic aromatic hydrocarbons in rural and urban atmosphere of Tianjin, China, ” Chemosphere, No. 62, pp.357-367.
46. Yunker, M. B., Macdonald, R. W., Vingarzan, R. M., Reginal, H., Goyette, D. and Sylvestre, S., “PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition, ” Organic Geochemistry, No. 33, 2002, pp.489-515.
47. 楊慈定,「健康拜香之研發:拜香燃煙所產生氣態與微粒態污染物排放特性」,國立台灣大學環境衛生研究所,民國94年。
48. 洪偉倫,「拜香燃煙所產生微粒相多環芳香烴排放特性」,元培科技大學環境工程衛生研究所,民國100年。
49. 許子威,「蚊香燃燒所產生不同粒徑微粒負載的多環芳香烴排放特性」,元培科技大學環境工程衛生研究所,民國101年。
50. 吳俊傑,「拜香燃煙所產生微粒相與氣相多環芳香烴排放特性」,元培科技大學環境工程衛生研究所,民國101年。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top