(3.227.0.150) 您好!臺灣時間:2021/05/06 11:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃志翔
研究生(外文):Huang Zhi-Xiang
論文名稱:以改質光觸媒結合臭氧法對甲苯去除之研究
論文名稱(外文):Removal of the toluene with modified photocatalyst combined ozone method
指導教授:張宗良張宗良引用關係
指導教授(外文):Chang Chung-Liang
學位類別:碩士
校院名稱:元培科技大學
系所名稱:環境工程衛生研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
畢業學年度:101
語文別:中文
論文頁數:72
中文關鍵詞:活性碳奈米碳管臭氧甲苯
外文關鍵詞:MnPACCNTsOzoneToluene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
二氧化鈦結合UV光為一種有效處理揮發性有機物之方法,藉由光催化處理程序將污染物去除。本研究以錳、活性碳(Powder Activated Carbon, PAC)、奈米碳管(Carbon Nanotube, CNTs)將TiO2改質,並於實驗程序中將觸媒直接加熱再與臭氧結合方式,進行一新型光催化處理程序,應用於處理氣流中之甲苯。結果顯示使用Mn-TiO2觸媒具有最高之處理效率,當增加臭氧濃度、提升反應溫度皆可有效的提升光催化去除甲苯之效能。
Titanium dioxide combined UV light is an effective treatment method for volatile organic compounds, removing the contaminants by photocatalytic process. In this study, the modified of TiO2 for Mn, PAC and CNTs, and combined new photocatalytic treatment of catalyst directly heating and ozone, applied to the treatment flow of toluene. The results showed that using Mn-TiO2 catalyst has the highest processing efficiency, while increasing ozone concentration and reaction temperature can effectively improve the performance of photocatalytic removal of toluene.
目錄
頁次
摘要 I
目錄 III
圖目錄 V
表目錄 VI
第一章前言 1
1.1 研究緣起 1
1.2 研究目的 1
第二章文獻回顧 2
2.1 揮發性有機物之簡介 2
2.2 甲苯的特性、用途及危害 4
2.3二氧化鈦簡介 6
2.4臭氧 6
2.5 複合式材料簡介 7
2.5.1 PAC 7
2.5.2 CNTs 8
2.6光催化反應之研究 8
2.6.1 UV-TiO2&; UV-TiO2/O3反應 8
2.6.2 UV/TiO2/Metal/O3反應 9
2.6.3 UV/TiO2/Metal反應 10
2.6.4UV-TiO2/PAC/O3反應 11
2.6.5UV-TiO2/CNTs/O3反應 13
2.7 溫度參與反應之研究 15
第三章實驗設備與方法 17
3.1 實驗流程 17
3.2 實驗設備 19
3.2.1 氣體供應系統 20
3.2.2光催化反應 21
3.2.3 電力系統 23
3.2.4 產物分析系統 23
3.3 實驗程序 27
3.3.1觸媒製備 27
3.3.2觸媒塗佈 34
3.4操作參數 35
3.5自製TiO2、PAC/ 自製TiO2及CNTs/自製TiO2材料分析 37
3.5.1 X光繞分析儀 37
3.5.2 比表面積(BET) 38
第四章結果與討論 39
4.1各光催化程序之影響 39
4.2觸媒之影響 42
4.3 操作因子之影響 45
4.3.1有無照光之影響 45
4.3.2 操作溫度之影響 48
4.3.3 操作流量之影響 51
4.3.4 臭氧濃度之影響 54
第五章結論 57
第六章參考文獻 58

第六章參考文獻
英文部分
Anpo M., Chiba K., Tomonari M., Coluccia S., Che M., Fox M.A., “Thermal and Optical Switching of Iron(II) Complexes,” Bull. Chem. Soc. Jpn. 64, 543 (1994).
Arana J., Melian J.A.H., Rodrigez J.M.D., Diaz O.G., Viera A., Pena J.P., Sosa P.M. M., and JimenezV.E., “TiO2-Photocatalysis as a Tertiary Treatment of Naturally Treated Wastewater,” Catalysis Today, 76, 279-289 (2002).
Augugliaro V., Litter M., Palmisano L., Soria J., J. Photochem., “The combination of heterogeneous photocatalysis with chemical and physical operations: A tool for improving the photoprocess performance,”Photobiol. C: Photochem. Rev. 7.127–144(2006).
Bouazza N., Ouzzine M., Lillo-Ro´ denas M.A., Eder D., A. Linares-Solano, “TiO2 nanotubes and CNT–TiO2 hybrid materials for the photocatalytic oxidation of propene at low concentration, ” Applied Catalysis B: Environmental 92, 377–383(2009).
Byrne J.A., DavidsonA., Dunlop P.S.M., and Eggins B.R., “Water Treatment Using Nano-Crystalline TiO2 Electrodes,” Journal of Photochemistry and Photobiology A: Chemistry, 148, 365-374 (2002).
Cao L.X., Gao Z., Suib S.L., Obee T.N., Hay S.O., Freihaut J.D., “Photocatalytic oxidation of toluene on nanoscale TiO2 catalyst: studies of deactivation and degeneration, ”J. Catal. 196. 253–261 (2000).
Chen J., Li G., Huang Y., Zhang H., Huijun Zhao, An T., “Optimization synthesis of carbon nanotubes-anatase TiO2 composite photocatalyst by response surface methodology for photocatalytic degradation of gaseous styrene, ” Applied Catalysis B: Environmental 123– 124, 69–77(2012).
Cho K.C., Hwang K.C., Sano T., Takeuchi K., Matsuzawa S., “Photocatalytic performance of Pt-loaded TiO2 in thedecomposition of gaseous ozone,”Journal of Photochemistry and Photobiology A: Chemistry 161, 155–161(2004).
Demirbas A., “Agricultural Based Activated Carbons for the Removal of Dyes from Aqueous Solutions: A Review,” Journal of Hazardous Materials, 167, 1-9 (2009).
Ebbesen T.W., Lezee H.J., Hiura H., Neentt J.W., Ghaemi H.F., T Thio., “Electrical conductivity of individual carbon nanotubes,”Nature 382, 54 (1996).
Einaga H., Ogata A., “Benzene oxidation with ozone over supported manganese oxide catalysts : Effect of catalyst support and reaction conditions, Journal of Hazardous Materials, ”164-2-3, 1236-1241(2009).
Fujishima A., and Honda K., “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, 238, 37-38 (1972).
Gao B., Chen G. Z., and Puma G. L., “Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol–gel methods exhibiting enhanced photocatalytic activity,” Applied Catalysis B: Environmental, 89, 503–509 (2009).
Grzechulska J., Hamerski M., and Morawski A.W., “Photocatalytic Decomposition of Oil in Water,” Water Research, 34, 1638-1644 (2000).
Hernandez-Alonso M.D., Tejedor-Tejedor I., “Operando FTIR study of the photocatalytic oxidation of methylcyclohexane and toluene in air over TiO2–ZrO2 thin films: Influence of the aromaticity of the target molecule on deactivation,”Coronado J.M., Anderson M.A., Appl. Catal. B 101, 283–293 (2011).
Hilal N., Hankins N., Cho I.H., and Kim C.G., “Optimal Strategy for Algae Control in Potable Water Treatment Facilities,” International Journal of Environmental Technology and Management, 4, 236-252 (2004).
Hille M., and Ouden J.D., “Charcoal and Activated Carbon as Adsorbate of Phytotoxic Compounds: A Comparative Study,” Oikos, 108, 202-207 (2005).
Hong Q., SUN D.Z., CHI G.Q., “Formaldehyde degradation by UV/TiO2/O3 process using continuous flow mode, ” Journal of Environmental Sciences 19, 1136–1140(2007).
Hu C., Wang Y. Z., Tang H. X., “Preparation and characterization of surface bond-conjugated TiO2/SiO2 and photocatalysis for azo dyes, ”App l Catal B , 30 ( 3-4) : 277 (2001).
Huang H., “Removal of Air Pollutants by Photocatalysis with Ozone in a Continuous-Flow Reactor, Environmental Engineering Science,”Volume: 27 Issue: 8 Pages: 651-656(2010).
HuangX., Yuan J., Shi J., Shangguan W., “Ozone-assisted photocatalytic oxidation of gaseous acetaldehyde on TiO2/H-ZSM-5 catalysts, ” Journal of Hazardous Materials 171, 827–832(2009).
Ichiuraet H., Kitaoka T., Tanaka H.,“Removal of indoor pollutants under UV irradiation by a composite TiO2-zeolite sheet prepared using a papermaking technique, ”Chemosphere, Vol.50, 79-83(2003).
Iijima S. “Helical microtubles of graphitic carbon, ” Nature, 354, 56-58, (1991).
Imamura S., Ikebata M., Ito T., Ogita T.,“Decomposition of ozone on a silver catalyst, ”Ind. Eng. Chem. Res. 30, 217(1991).
Jung D., Kim G., Kim M.S., and Kim B.W., “Evaluation of photocatalytic activity of carbon-doped TiO2 films under solar irradiation, ” Korean J. Chem. Eng., 29(6), 703-706 (2012).
Kang M. G., Han H. E., Kim K. J., “Enhanced photodecomposition of 4-chlorophenol in aqueous solution by deposition of CdS on TiO2, ”J Photochem Photobiol A, 125( 1- 3) : 119 (1999).
Kasprzyk-Hordern B., Ziolek M., Nawrocki J., “Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment, ”Appl. Catal. B: Environ. 46. 639–669 (2003).
Kim H.H., Tsubota S., Date´ M., Ogata A. and Futamura S., “Catalyst regeneration and activity enhancement of Au/TiO2 by atmospheric pressure nonthermal plasma, ” Applied Catalysis A: General 329, 93–98(2007).
Knappe D.R.U., “Chapter 9: Surface chemistry effects in activated carbon adsorption of industrial pollutants, in: G. Newcombe, D. Dixon (Eds.), Interface Science and Technology, ”vol. 10, pp. 155–177 (2006).
Kozlov D.V., Vorontsov A.V., J., “Sulphuric acid and Pt treatment of the photocatalytically active titanium dioxide, ”Catal. 258, 87–94 (2008).
Kuo H.P., Wu C.T., Hsu R.C., “Continuous reduction of toluene vapours from the contaminated gas stream in a fluidised bed photoreactor, ”Powder Technol. 195, 50–56 (2009).
Li J., Fu H., Fu L., Hao J., “Preparation of Metallic Ion-Doped TiO2 Thin Films and Their Photocatalytic Performance for Toluene Degradation, ” CHINESE JOURNAL OF CATALYSIS Volume: 26 Issue: 6 Pages: 503-507(2005).
Li M., Hui K.N., Hui K.S., Lee S.K., Cho Y.R., Lee H., W. Zhou, Shinho Cho, C.Y.H. Chao, Yangyang Li, “Influence of modification method and transition metal type on the physicochemical properties of MCM-41 catalysts and their performances in the catalytic ozonation of toluene, ” Applied Catalysis B: Environmental 107, 245– 252(2011).
Li X., Zou X., Qu Z., Zhao Q., Lianzhou Wang, “Photocatalytic degradation of gaseous toluene over Ag-doping TiO2 nanotube powder prepared by anodization coupled with impregnation method, ” Chemosphere 83, 674–679 (2011).
Li Y., Li X., Li J., and Yin J., “Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study,” Water Research, 40, 1119-1126 (2006).
Long L., Zhao J., Yang L., Fu M., Wu J., Huang B., Ye D., “Room Temperature Catalytic Ozonation of Toluene over MnO2/Al2O3, ” Chin. J. Catal. 32: 904–916(2011).
Long R.Q., Yang R.T., Am, J., “Carbon nanotubes as superior sorbent for dioxin removal, ”Chem. Soc. 123, 2058 (2001).
Maksudov D.V., Ismagilov F.R., Khairlin I. Kh., Khairlin S. R., Ismagilov Z.R., “Study of ozone generation in the bed of heterogeneous catalysts of various geometry, ”EurasianChem-Technol. J. 4. 271(2002).
Merian E., “The Environmental Chemistry of Volatile Hydrocarbons,”Toxicol Environ Chem, 5: 167-175 (1982).
Muggli D S, Ding L F, Odland M J., “Improved Catalyst for Photocatalytic Oxidation of Acetaldehyde Above Room Temperature,” Catal Lett, 78 ( 1-4) : 23 (2002).
Newcombe G., and Nicholson B., “Treatment Options for the Saxitoxin Class of Cyanotoxins,” Water Science and Technology: Water Supply, 2, 271–275 (2002).
Sanchez M., and Rincon M.E., “Sensor Response of Sol-Gel Multiwalled Carbon Nanotubes-TiO2 Composites Deposited by Screen-Printing and Dip-Coating Techniques,” Sensors and Actuators B: Chemical, 140, 17-23 (2009).
Schadler L.S., Giannaris S.C., Ajayan P.M., “Load transfer in carbon nanotube epoxy composites,”Appl. Phys. Lett. 73, 3842 (1998).
Sekiguchi K., Sanada A., Sakamoto K., “Degradation of toluene with an ozone-decompositioncatalyst in the presence of ozone, and the combined effect ofTiO2 addition,”Catalysis Communications 4, 247–252 (2003).
Selishchev D.S., Kolinko P.A., Kozlov D.V., “Influence of adsorption on the photocatalytic properties of TiO2/AC compositematerials in the acetone and cyclohexane vapor photooxidation reactions, ” Journal of Photochemistry and Photobiology A: Chemistry 229, 11– 19 (2012).
Siemon U., Bahnemann D., Testa J.J., Rodriguez D., Litter M.I., Bruno N., “Heterogeneous photocatalytic reactions comparing TiO2 and Pt/TiO2,” J. Photochem. Photobiol.A 6002, 1(2002).
Silva C. G.., and Faria J. L., “Photocatalytic oxidation of benzene derivatives in aqueous suspensions: Synergic effect induced by the introduction of carbon nanotubes in a TiO2 matrix,” Applied Catalysis B: Environmental, 101, 81-89 (2010).
Snyder S.A., Adham S., Redding A.M., Cannon F.S., DeCarolis J., Oppenheimer J.,.Wert E.C., and Yoon Y., “Role of Membranes and Activated Carbon in the Removal of Endocrine Disruptors and Pharmaceuticals,” Desalination, 202, 156-181 (2007).
Subramani A. K., Byrappa K., Ananda S., Rai K. M. L., Ranganathaiah C., and Yoshimura M., “Photocatalytic degradation of indigo carmine dye using TiO2 impregnated activated carbon,” Bulletin of Materials Science, 30, 37–41 (2006).
Tian L., Ye L., Deng K., and Zan L., “TiO2/Carbon Nanotube Hybrid Nanostructures: Solvothermal Synthesis and their Visible Light Photocatalytic Activity,” Journal of Solid State Chemistry, 184, 1465-1471 (2011).
Tryba B, Morawski A W, Inag aki M., “A new route for preparation of TiO2-mounted activated carbon,” App l Catal B, 46( 1) : 203 (2003).
Urashima K. and Chang J. S., “Removal of volatile organic compoundsfrom air Streams and industrial flue gases by non-thermai plasmatechnology,” IEEE Transactions on Dielectrics and Electrical Insulation , 7-5,602-614(2000).
Vorontsov A.V., Savinov E.N., Jin Z.S., Photochem J., “Influence of the form of photodeposited platinum on titania upon its photocatalytic activity in CO and acetone oxidation, ”Photobiol. A125, 113(1999).
Wang H., Wang H.L, and Jiang W.F., “Solar photocatalytic degradation of 2,6-dinitrop-cresol (DNPC) using multi-walled carbon nanotubes (MWCNTs)–TiO2 composite photocatalysts,” Chemosphere, 75, 1105–1111 (2009).
Wang H.C., Chang S.H., Hung P.C., Hwang J.F., “Catalytic oxidation of gaseous PCDD/Fs with ozone over iron oxide catalysts, ” Chemosphere 71, 388–397(2008).
Wang T., Jiang X., Wu Y.X., “Influence of crystallization of nano TiO2 prepared by adsorption phase synthesis on photodegradation of gaseous toluene, ” Ind. Eng. Chem. Res. 48, 6224–6228(2009).
Westerhoff, P., Yoon, Y., Snyder, S., and Wert, E., “Fate of Endocrine-Disruptor, Pharmaceutical, and Personal Care Product Chemicals during Simulated Drinking Water Treatment Processes,” Environmental Science and Technology, 39, 6649-6663 (2005).
Yamazaki S., Tanaka S., Tsukamoto H., “Kinetic Studies of Oxidation of Ethylene over a TiO2 Photocatalyst. J. Photochem, ” Photobiol.A, v. 121, 55-61(1999).
Yang Q., Liao Y., Mao L., “Kinetics of Photocatalytic Degradation of Gaseous Organic Compounds on Modified TiO2/AC Composite Photocatalyst, ” Chinese Journal of Chemical Engineering, 20(3) 572-576 (2012).
Ye M.M., Chen Z.L., Liu X.W., Ben Y., Shen J.M., Hazard J., “Ozone enhanced activity of aqueous titanium dioxide suspensions for photodegradation of 4-chloronitrobenzene, ”Mater. 167. 1021–1027(2009).
Yu K.P., Gracce Lee W.M.., “Decomposition of gas-phase toluene by the combination of ozone and photocatalytic oxidation process (TiO2/UV, TiO2/UC/O3 and, UV/O3),” Applied Catalysis B:Environmental, 75, pp.29-38( 2007).
Yu Q., Pan H., Zhao M., Liu Z., Wang J., Chen J., Gong M., “Influence of Calcination Temperature on the Performance of Pd–Mn/SiO2–Al2O3 Catalysts for Ozone Decomposition, Journal of Hazardous Materials, ”Volume 172(2-3), Pages 631-634(2009).
Yu Y., Yu J. C., Yu J. G.., Kwok Y. C., Che Y. K., Zhao J. C., Ding L., Ge W. K., and Wong P. K., “Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes,” Applied Catalysis A: General, 289, 186–196(2005).
YuanM.H., Chang C.Y., Shie J.L., Chang C.C., Chen J.H., Tsai W.T., “Destruction of naphthalene via ozone-catalytic oxidation process over Pt/Al2O3 catalyst, ” Journal of Hazardous Materials 175, 809–815 (2010).
Zhang R., Wang Q., Liang J., Li Q., Dai J., Li W.,“Optical propertiesofNandtransitionmetalR(R=V, Cr, Mn, Fe, Co, Ni, Cu, and Zn)codopedanataseTiO2, ” Physica B 407, 2709–2715 (2012).
Zhang X., and Lei L., “Effect of preparation methods on the structure and catalytic performance of TiO2/AC photocatalysts,” Journal of Hazardous Materials, 153, 827–833(2008).





中文部分
盧宜含,「利用Thiosphaera pantotropha於懸浮與PVA 固定化系統中進行丙酮廢氣分解能力之研究」,中華大學土木工程學系環工組碩士論文,2005。
劉國棟,「VOC管制趨勢展望」,工業污染防治,第48期,第10頁,1993。
溫添進、張家欽,「臭氧之應用及其電解法製造」,化工,第四十一卷,第三期,第60~71頁,1994。
勞工安全衛生研究所-物質安全資料表,http://www.iosh.gov.tw/Publish.aspx?cnid=25
陳詩婷,「二氧化鈦複合材料製備與光催化性質研究」,國立高雄應用科技大學碩士論文,2012。
莊錦烽,「VOC廢氣處理概論」,化工技術,第一卷,第八期,第78頁,1994。
張宗良,「開發具節能特性的觸媒反應器處理氣流中揮發性有機污染物」,行政院國家科學委員會專題研究計劃成果報告,2012。
柯澤豪、洪凱炫,「活性碳纖維的研發與最新應用」,化工技術,第十卷,第二期, 134-153頁,2002。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔