(3.238.99.243) 您好!臺灣時間:2021/05/17 00:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:魏語秀
研究生(外文):Yu-Xiu Wei
論文名稱:連續加藥式 Sono-Fenton 程序降解乙二胺廢水之可行性評估
論文名稱(外文):Feasibility Evaluation of Ethylenediamine Wastewater Decontamination by a Continuous Dosing Mode Sono-Fenton Process
指導教授:馬英石馬英石引用關係
指導教授(外文):Ying-Shih Ma
學位類別:碩士
校院名稱:元培科技大學
系所名稱:環境工程衛生研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
畢業學年度:101
語文別:中文
論文頁數:63
中文關鍵詞:乙二胺礦化率有機剝膜程序連續加藥式 Sono-Fenton 程序總有機碳
外文關鍵詞:EthylenediamineMineralizationOrganic stripping liquidscontinuous dosing mode Sono-Fenton processTotal organic carbon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
乙二胺為一種不易被生物分解之有機物,常應用於半導體製程中之有機剝膜程序,因此,本研究期望利用連續加藥式 Sono-Fenton 程序對於乙二胺之分解及礦化進行探討,並調整不同參數包含 pH 值、過氧化氫加入量、亞鐵離子添加量、反應溫度、陰離子的添加及乙二胺初始濃度之差異等,以確認最合宜之處理條件,並評估此一程序對於乙二胺廢水處理之可行性。反應過程中取得之水樣分別對氧化還原電位 (oxidation reduction potential, ORP)、pH、總有機碳 (total organic carbon, TOC)、H2O2 及乙二胺的濃度進行測定。實驗結果顯示,使用單純超音波、超音波/H2O2、Fenton 及 Sono-Fenton 程序對於相同條件之乙二胺廢水進行處理時,經過 60 分鐘反應後,乙二胺之去除率分別為 15.4%、17.2%、44.9% 及 61.0%,其分解之擬一階反應動力常數分別為 3.2、3.9、4.6 及 6.3 ×10-2 min -1,礦化率則分別為 15.0%、17.0%、39.7% 及 53.5%,顯示對於乙二胺之分解與礦化而言,Sono-Fenton 程序較其他三種程序為佳及迅速。而根據不同參數的實驗結果得知,在 pH 3 時乙二胺之去除效率較其他 pH 值高出 17-39%,而 H2O2 的加入量越高,對於乙二胺的分解效果越佳,當 H2O2 固定時,實驗顯示過高的亞鐵離子添加反而會抑制乙二胺的分解作用。在不同反應溫度下,由實驗果發現最佳條件為 25oC,而陰離子的存在,會抑制乙二胺之去除效率。由實驗結果可得知,連續加藥式 Sono-Fenton 程序對於降解乙二胺確實具有其可行性,但合宜之參數條件更有助於去除效率之提升。
Contamination of ethylenediamine (C2H8N2), which is a bio-refractory and non-biodegradable compound, is generally used in organic stripping liquids and is the main organic pollution source in the wastewater of IC industry. To investigat the effects of different reaction parameters such as pH values, H2O2 and Fe2+ dosages, reaction temperatures, anions and initial concentrations of ethylenediamine, a continuous dosing mode Sono-Fenton process was carried out in this study to degrade and mineralize the ethylenediamine wastewater and evaluate its feasibifity. Profiles of oxidation reduction potential (ORP), pH, H2O2 concentration, removal of ethylenediamine and total organic carbon (TOC) were measured during the reactions. Experimental results indicated that the degradation of ethylenediamine were 15.4%, 17.2%, 44.9% and 61.0%, respectively, through sole ultrasound process, ultrasound/H2O2 process, Fenton process and Sono-Fenton process under the same conditions; the first-order reaction rate constants were 3.2, 3.9, 4.6 and 6.3 ×10-2 min-1. Removal of TOC were 15.3%, 17.4%, 39.7% and 53.5%. It was found that pH 3.0 showed a better degradation efficiency of ethylenediamine, which was more than other pH levels in 17-39%. Higher H2O2 dosage was profitable to ethylendiamine as the Fe2+ was controlled at constant dosage; additional Fe2+ dosages was wortless to enhance the ethylenediamine degradation. The temperature of 25oC was better than other temperatures. Presences of anions inhibited the degradation of ethylenediamine by Sono-Fenton process. Hence, feasibility of continuous dosing mode Sono-Fenton process regarding ethylenediamine degradation were proven at suitable experimental conditions.
目 錄
中文摘要 I
英文摘要 .....Ⅲ
目錄 Ⅴ
圖目錄 Ⅶ
表目錄 Ⅹ
第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 4
2.1 乙二胺之基本特性 4
2.2 高級氧化程序 4
2.3 Sono-Fenton 程序 10
2.4 Sono-Fenton 程序操作參數之影響 11
2.4.1 pH之影響 16
2.4.2 Fe2+的影響 18
2.4.3 H2O2 的影響 19
2.4.4溫度之影響 20
2.4.5初始濃度之影響 21
2.4.6陰離子之影響 22
第三章 實驗方法與步驟 24
3.1 實驗概述 24
3.2 實驗裝置 25
3.3 實驗參數設計 25
3.4 分析項目與方法 26
3.4.1 乙二胺分析方法 27
3.4.2 總有機碳分析方法 28
3.4.3 H2O2 分析方法 30
3.4.4 毒性測定 31
3.5 實驗藥品 31
第四章 結果與討論 33
4.1 pH 之影響 33
4.2 Fe2+加入量之影響 35
4.3 H2O2 加入量之影響 40
4.4 不同反應溫度之影響 44
4.5 不同初始濃度之影響 48
4.6 添加不同陰離子之影響 52
4.7 不同反應條件時處理效率之比較 55
第五章結論與建議 57
5.1 結論 57
5.2 建議 58
參考文獻 59


參考文獻
1. Ai, G., “Removal of xanthate in flotation wastewater by ultrasound and Fenton reagent,” International Conference on, Electric Technology and Civil Engineering (ICETCE), 2011, pp. 22-24.
2. Babuponnusami, A. and Muthukumar, K., “Advanced oxidation of phenol: A comparison between Fenton, electro-Fenton,sono-electro-Fenton and photo-electro-Fenton processes,” Chemical Engineering Journal, Vol. 183, No. 15, 2012, pp. 1–9.
3. Babuponnusami, A. and Muthukumar, K., “Degradation of Phenol in Aqueous Solution by Fenton, Sono-Fenton and Sono-photo-Fenton Methods,” CLEAN – Soil, Air, Water, Vol. 39, No. 2, 2011, pp. 142–147.
4. Bianco, B., Michelis, I. D. and Vegliò, F., “Fenton treatment of complex industrial wastewater: Optimization of process conditions by surface response method,” Journal of Hazardous Materials, Vol.168, No. 2-3, 2011, pp. 1733–1738.
5. Bremner, D. H., Carlo, S. D., Chakinala, A. G. and Cravotto, G.,“Mineralisation of 2,4-dichlorophenoxyacetic acid by acoustic or hydrodynamic cavitation in conjunction with the advanced Fenton process,” Ultrasonics Sonochemistry, Vol. 15, No. 4, 2008, pp. 416–419.
6. Chen, W. S. and Huang, G. C., “Sonochemical decomposition of dinitrotoluenes and trinitrotoluene in wastewater,” Journal of Hazardous Materials, Vol. 169, No. 1-3, 2009, pp. 868–874.
7. Chen, W. S. and Huang, Y. L., “Removal of dinitrotoluenes and trinitrotoluene from industrial wastewater by ultrasound enhanced with titanium dioxide,” Ultrasonics Sonochemistry, Vol. 18, No. 5, 2010, pp. 1232-1240.
8. Engineering,” Ind. Eng. Chem. Res., Vol. 38, No.4, 1999, pp. 1215-1249.
9. Farias, J., Albizzati, E. D. and Alfano, O. M., “Kinetic study of the photo-Fenton degradation of formic acid: combined effects of temperature and iron concentration,” Catal. Today, Vol. 144, No. 1–2, 2009, pp. 117–123.
10. Grčić, I., Obradović, M., Vujević, D. and Koprivanac, N., “Sono-Fenton oxidation of formic acid/formate ions in an aqueous solution: from an experimental design to the mechanistic modeling,” Chemical Engineering Journal, Vol. 164, No. 1, 2010, pp. 196-207.
11. Gulkaya, İ., Surucu, G. A. and Dilek, F. B., “Importance of H2O2/Fe2+ ratio in Fenton’s treatment of a carpet dyeing wastewater,” Journal of Hazardous Materials B, Vol. 136 , No. 3, 2006, pp. 763–769.
12. Gümüş, D. and Akbal, F., “Photocatalytic degradation of textile dye and wastewater,” Water, Air, &; Soil Pollution, Vol. 216, No. 1-4, 2011, pp. 117-124.
13. Kang, N., Lee, D. S. and Yoon, J., “Kinetic modeling of Fenton oxidation of phenol and momochlorophenls”, Chemosphere, Vol. 47, No. 9, 2002, pp. 15-924.
14. Kidak, R. and Ince, N. H., “Catalysis of advanced oxidation reactions by ultrasound: A case study with phenol,” Journal of Hazardous Materials, Vol. 146 , No. 3, 2007, pp. 630–635.
15. Köhler, C., Venditti, S., Igos, E., Klepiszewski, K., Benetto, E. and Cornelissen, A., “Elimination of pharmaceutical residues in biologically pre-treated hospital wastewater using advanced UV irradiation technology: A comparative assessment,” Journal of Hazardous Materials, Vol. 239–240, No. 15, 2012, pp. 70–77.
16. Kumar, A., Vaishali, P. and Ramamurthy, “Kinetics and mechanism of oxidation of ethylenediamine and related compounds by diperiodatoargentate (III) ion,” International Journal of Chemical Kinetics, Vol. 32, No. 5, 2000, pp. 286–293.
17. Lee, J., Lee, C. and Yoon, J., “High temperature dependence of 2, 4- dichlorophenoxyacetic acid degradation by Fe3+/H2O2 system,” Chemosphere, Vol. 51, No. 9, 2003, pp. 963–971.
18. Legrini, O. R., Oliveros, E., Braun, A. M., Chem Rev, Vol. 93 pp. 671-698 (1993).
19. Li, J. T., Song and Y. L., “Degradation of AR 97 aqueous solution by combination of ultrasound and Fenton reagent,” Environmental Progress &; Sustainable Energy, Vol. 29, No. 1, 2012, pp. 101–106.
20. Liang, J., Komarov, S., Hayashi, N. and Kasai, E., “Improvement in sonochemical degradation of 4-chlorophenol by combined use of Fenton-like reagents,” Ultrasonics Sonochemistry, Vol. 14, No. 2, 2007, pp. 201-207.
21. Lin, J. G. and Ma, Y. S. “Oxidation of 2-chlorophenol in water by an ultrasound/Fenton method”. Journal of Environmental Engineering, Vol. 126, No. 2, 2000, pp. 130-137.
22. Lu, M. C., Chen, J. N. and Chang, C. P. “Oxidation of dichlorvos with hydrogen peroxide using ferrous ions as catalyst”, J. Hazardous Materials, Vol. 65, No. 3, 1999, pp. 277–288
23. Ma, Y. S. and Sung, C.-F., “Investigation of carbofuran degradation by ultrasonic process,” Sustainable Environment Research, Vol. 20, No. 4, 2010, pp. 213-219.
24. Ma, Y. S., Kumar, M. and Lin, J. G. “Degradation of carbofuran-contaminated water by Fenton process.”Journal of Environmental Science and Health, Part A, Vol. 44, No. 9, 2009, pp. 914-920.
25. Ma, Y. S., Sung, C.-F., Lin, J. G. “Degradation of carbofuran in aqueous solution by ultrasonic and Fenton processes: Effect of system parameters and kinetic study,”Journal of Hazardous Materials, Vol. 178, No. 1-3, 2010, pp. pp.320-325.
26. Mahmoud, M. E., “Comparison of metal uptake properties of silica gel-bound ion exchangers and some amine derivatives,” Analytical Letters, Vol. 29, No. 10, 1996, pp. 1791-1804.
27. Malik, P. K. and Saha, S. K., “Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst,” Separation and Purification Technology, Vol. 31, No. 3, 2003, pp. 241–250.
28. Manisha, V. B. and Parag, R. G., “Sonochemical degradation of alachlor in the presence of process intensifying additives,” Separation and Purification Technology, Vol. 90, No. 27, 2012, pp. 92–100.
29. Meeusen, J. W., Nowakowski, A. and Petering, D. H., “Reaction of metal-binding ligands with the zinc proteome: zinc sensors and N,N,N′,N′-Tetrakis(2-pyridylmethyl)ethylenediamine,” American Chemical Society, Vol. 51, No. 6, 2012, pp. 3625-3632.
30. Minero, C., Pellizzari, P., Maurino, V., Pelizzetti, E. and Vione, D., “Enhancement of dye sonochemical degradation by some inorganic anions present in natural waters,” Applied Catalysis B: Environmental, Vol. 77, No.3-4, 2008, pp. 308–316
31. Minero, C., Pellizzari, P., Maurino, V., Pelizzetti, E. and Vione, D., “Enhancement of dye sonochemical degradation by some inorganic anions present in natural waters,”Applied Catalysis B: Environmental, Vol. 77, No. 3-4, 2008, pp. 308–316.
32. Mojtaba, A., Ali, T., Gholamreza, M. and Mohamadali, A., “Municipal Landfill Leachate Treatment by Advanced Oxidation Process (Ultrasound/H2O2) ,” Laboratory Medicine, Vol. 17, No. 4, 2012, pp. 5-10.
33. Momani, F. A., Sans, C. and Esplugas, S., “A comparative study of the advanced oxidation of 2,4-dichlorophenol,” Journal of Hazardous Materials B, Vol. 107, No. 3, 2004, pp. 123–129.
34. Namkung, K. C., Burgess, A. E., Bremner,D. H. and Staines, H., “Advanced Fenton processing of aqueous phenol solutions: A continuous system study including sonication effects,” Ultrasonics Sonochemistry, Vol. 15 , No. 3, 2008, pp. 171–176.
35. Oturan, M. A., Sires, I., Oturan, N., Perocheau, S., Laborde, J. L., and Trevin, S. “Sonoelectro-Fenton process: A novel hybrid technique for the destruction of organic pollutants in water, ”Journal of Electroanalytical Chemistry, Vol. 624, No. 1-2, 2008, pp. 329-332.
36. Özdemir, C., Öden, M.K., Şahinkaya1, S. and Kalipçi, E., “Color removal from synthetic textile wastewater by Sono-Fenton process,” Clean-Soil, Air, Water, Vol. 39, No. 1, 2011, pp. 60-67.
37. Parsons, S., Advanced oxidation processes for water and wastewater treatment, IWA London, 2004.
38. Pignatello, J. J, Oliveros, E. and MacKay, A., “Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry,” Environmental Science &; Technology, Vol. 36 , No. 1, 2006, pp. 1–84.
39. Pradhan, A. A. and Gogate, P. R., “Degradation of p-nitrophenol using acoustic cavitation and Fenton chemistry,”Journal of Hazardous Materials, Vol. 173 No. 1-3, 2010,pp. 517–522.
40. Rasheed, Q. J., Pandian, K., and Muthukumar, K., “Treatment of petroleum refinery wastewater by ultrasound-dispersed nanoscale zero-valent Iron particles,” Ultrasonics Sonochemistry, Vol. 18, No. 5, 2011, pp. 1138-1142.
41. Sillanpää, M., Pham, T. D. and Shrestha, R. A., “Ultrasound Technology in Green Chemistry,” SpringerBriefs in Molecular Science, 2011, pp. 1-21.
42. Son, H. S., Choi, S. B., Khan, E. and Zoh, K. D.,“Removal of 1,4-dioxane From water Using Sonication: Effect of Adding Oxidants on the Degradation Kinetics,” Water Research, Vol. 40, No. 4, 2006, pp. 692 – 698.
43. Sun, J. H., Sun, S. P., Sun, J. Y., Sun, R. X., Qiao, L. P., Guo, H. Q. and Fan, M. H. “Degradation of azo dye Acid black 1 using low concentration iron of Fenton process facilitated by ultrasonic irradiation,”Ultrasonics Sonochemistry, Vol.14, No. 6, 2 007, pp. 761-766
44. Suslick, K. S., “Sonochemistry”, Science, 1990, pp. 1439-1445.
45. Thompson, L. H. and Doraiswany, L. K.,“Sonochemistry: Science and Engineering,” I&;ECrecearch, Vol. 38, No. 4, 1999, pp. 1215-1249.
46. Torres, D. J., Faria, E. A. and Alexandre G. S. P., “Hermodynamic studies of the interaction at the solid/liquid interface between metal ions and cellulose modified with ethylenediamine,” Journal of Hazardous Materials, Vol. 129, No. 1-3, 2006, pp. 239–243.
47. Wang, X., Yao, Z., Wang, J., Guo, W. and Li, G., “Degradation of reactive brilliant red in aqueous solution by ultrasonic cavitation,” Ultrasonics Sonochemistry, Vol. 15, No. 1, 2008, pp. 43–48.
48. Weavers L. K., Ling F. H. and Hoffmann M. R., “Aromatic compound degradation in water using a combination of sonolysis and ozonolysis,” Environmental Science Technology, Vol. 32, No. 18, 1988, pp. 2727-2733.
49. Weng, C. H., Lin, Y. T., Chang, C. K. and Liu, N. “Decolourization of direct blue 15 by Fenton/ultrasonic process using a zero-valent iron aggregate catalyst,” Ultrasonics Sonochemistry, Vol. 20, No. 3, 2013 pp. 970-977.
50. Wu, C. H., Hong, P. K. A., and Jian, M. Y., “Decolorization of reactive red 2 in Fenton and Fenton-like Systems: Effects of Ultrasound and Ultraviolet Irradiation,” Reaction Kinetics Mechanisms and Catalysis, Vol. 106, No. 1, 2012, pp. 11-24.
51. Wu, D., Yang, Z., Wang, W., Tian, G., Xu, S. and Sims, A., “Ozonation as an advanced oxidant in treatment of bamboo industry wastewater,” Chemosphere, Vol. 88, No. 9, 2012, pp. 1108–1113
52. Yan, H., Wang, H., Qin, X., Liu, B., and Du, J., “Ultrasound-assisted Dispersive Iiquid–Iiquid Microextraction for Determination of Fluoroquinolones in Pharmaceutical Wastewater,” Journal of Pharmaceutical and Biomedical Analysis, Vol. 54, No. 5, 2011, pp. 53-57.
53. Zhang, H., Fu, H. and Zhang, D., “Degradation of C.I. acid orange 7 by ultrasound enhanced heterogeneous fenton-like process,” Journal of Hazardous Materials, Vol. 172, No. 2-3, 2009, pp. 654 – 660.
54. Zhang, H., Zhang J., Zhang, C., Liu, F. and Zhang, D., “Degradation of C.I. acid orange 7 by the advanced Fenton process in combination with ultrasonic irradiation,”Ultrasonics Sonochemistry, Vol. 16, No. 3, 2009, pp. 325-330.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top