(18.204.227.34) 您好!臺灣時間:2021/05/14 08:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳正哲
研究生(外文):Chen Cheng-Che
論文名稱:淋洗式好氧生物前處理對纖維性廢棄物厭氧消化程序之效能提升探討
論文名稱(外文):Enhanced Performance of Anaerobic Cellulose Wastes Digestion Through Bio-pretreatment with Aerobic Leaching Bed
指導教授:陳文欽陳文欽引用關係
指導教授(外文):Chen Wen-Chin
學位類別:碩士
校院名稱:元培科技大學
系所名稱:環境工程衛生研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
畢業學年度:101
語文別:中文
論文頁數:105
中文關鍵詞:好氧固態生物淋洗床生物前處理纖維性廢棄物BMP test厭氧消化
外文關鍵詞:Solid-state biological leaching bedBiological pre-treatmentCellulose wasteBMP testAnaerobic digestion
相關次數:
  • 被引用被引用:2
  • 點閱點閱:128
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究室針對廚餘進行厭氧處理與生質能源回收技術研發已有多年經驗,發現廚餘中所含的纖維性物質分解不易,為提高整體的生質能回收效能,強化纖維素物質分解微生物的培養與水解前處理程序為重要因子。因此,本研究選擇以好氧固態生物淋洗床為前處理單元,用高纖維果菜廢棄物作為水解纖維素前處理的基質,探討固態生物淋洗床內部迴流液的淋洗間隔時間,並將前處理後之有機基質以生化甲烷產氣潛能試驗(BMP test)進行測試,進行經高纖維果菜廢棄物水解纖維素前處理的產氣提升潛能分析,以確認前處理對於提升生質能源潛力,且能縮短所需時間等之可行性。研究結果發現,以淋洗式迴流基質與營養物質,減少翻攪破壞真菌菌絲,有助於細菌與真菌類對於纖維性物質的分解與微生物的培養,增加後續厭氧反應的產氣潛能。控制每4小時淋洗曝氣液15分鐘的前處理淋洗控制頻率,比較有無前處理後之纖維性物料的水質分析結果與BMP test產氣量,發現未前處理組於厭氧反應過程有容易酸化、產氣速率緩慢、累積產氣量少及反應瓶內COD無法有效降低的狀況發生。經前處理組最終產氣量在第150小時產氣量即已達到與未前處理組操作550小時的產氣量相當,且經前處理組最終產氣量可達到722 mL以上,最終淨氣體總產量為500 mL,總累積產氣量於相同反應時間與負荷下亦較未前處理組增加3倍以上的結果顯示,可見以好氧固態生物淋洗床為前處理單元可大幅縮短反應所需時間與增加產氣量,故本系統對為纖維性物料的分解具有應用潛力,於未來相關都市有機廢棄物厭氧處理系統的設計與應用上可作為參考。
Anaerobic digestion treatment of kitchen waste and biomass energy recycling technology development had been studied in our laboratory for many years. However, it was found that the cellulose substances in the kitchen waste could not be decomposed easily. In order to enhance the overall biomass recycling performance, the pre-treatment strategy and enrich culture of microbes to decompose cellulose are considered important factors. Therefore, High-fiber content of vegetable waste was as the influent substrate, and the aerobic solid-state biological leaching bed was served as the pre-treatment process to find the optimal elution time intervals of internal recirculating in the solid-state biological leaching bed in this study. And then, the substrate with/without pre-treatment was conducted through the Biochemical Methane Potential Test (BMP Test) in order to find the differences of gas production potential with bio-pretreatment.
The results clearly indicated that the leaching type of reactor recirculating substrates and nutrients can reduce the destruction of fungal hyphae and enhance the decomposition of fibrous substances by bacteria and fungi. It also showed the similar results for enhancing the gas production potential during the following batch anaerobic tests. By the analysis results of BMP test from water quality and biogas production potential indicated that control the frequency of the leaching pre-treatment with 15 minutes every 4 hours would get highest performances. It was also found that during the anaerobic reaction process, the cellulose wastes without pre-treatment would get lower gas production volumes and production rate due to the lower pH value and COD in the reaction cannot be effectively converted. Compare the final gas production volume, substrate with pre-treatment could be shorten the anaerobic digestion time from 550 hours to 150 hours with equivalent gas production. Additionally, the final gas production volume with the pre-treatment was achieved to 722 mL and the final total net gas production was over 500 mL in the same reaction time and loading. The results showed that the total cumulative gas production is triple higher than without pre-treatment. Obviously, the aerobic solid-state biological leaching bed used as the pre-treatment process greatly shortened the reaction time and increased the gas production potential. Therefore, this process should be considered as the high cellulose content material pre-treatment unit for shortening the reaction time and enhancing the potential of biomass energy. It shall serve as a reference for the design and application of related urban organic waste anaerobic treatment systems in the future.
致謝 I
摘要 II
英文摘要 III
目錄 V
圖目錄 VII
表目錄 XI
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 6
1.3 研究方法與架構 7
第二章 文獻回顧 9
2.1臺灣地區都市有機廢棄物回收與處理概況 9
2.2有機廢棄物厭氧生物處理與影響因子 12
2.2.1 有機廢棄物厭氧生物處理原理 12
2.2.2國內外有機廢棄物厭氧消化研究與操作現況整理 14
2.2.3 厭氧生物處理之影響因子 17
2.3纖維性物質前處理技術 24
2.3.1物理性前處理技術 26
2.3.2 化學前處理技術 30
2.3.3 生物性前處理技術 32
2.4淋洗式生物醱酵反應器處理與操作概述 34
2.4.1 淋洗式生物醱酵反應器 34
2.4.2 淋洗式生物醱酵反應器中真菌生長情形 38
第三章 實驗設備與方法 39
3.1好氧迴流式淋洗生物反應器設備與實驗方法 39
3.2實驗分析藥品及設備 42
3.2.1 水質分析項目及方法 42
3.2.2 實驗設備及藥品 43

第四章 結果與討論 44
4.1淋洗式生物前處理反應器改良 44
4.2前處理時間測試 46
4.3前處理淋洗頻率測試 52
4.4前處理與不同淋洗頻率對生質氣體產氣潛能之影響 57
4.4.1淋洗頻率4小時對生質氣體產氣潛能之影響 57
4.4.2淋洗頻率8小時對生質氣體產氣潛能之影響 69
4.4.3淋洗頻率12小時對生質氣體產氣潛能之影響 80
4.4.4不同淋洗頻率對生質氣體產氣潛能之綜合討論 91
第五章 結論與建議 93
參考文獻 96

1.Andre’ P. C. Faaij., “Bio-energy in Europe: changing technology choices”, Energy Policy, 34, (2006), 322-342.
2.Auria R, Ortiz I, Villegas E and Revah S, “Influence of growth and high mould concentration on the pressure drop in solid state fermentations”, Process Biochemistry 30(8), (1995), 751-756.
3.Antonopoulou, G., Gavala, H. N. and Skiadas, L. V., Angelopoulos, K. and Lyberatos, G., “Blofuels generation from sweet sorghum: Fermentative hydrogen production and anaerobic digestion of the remaining biomass”, Bioresource Technology, 99(1), (2008), 110-119.
4.Azbar, N., Ursillo, P. and Speece, R. E., “Effect of process configuration and substrate complexity on the performance of anaerobic processes”, Water Science and Technology, 35(3), (2001), 817-829.
5.Atalla, R. H. and VanderHart, D. L. “ Native cellulose Acomposite if two distinct crystalline forms” , Science ,223, (1984)283-284.
6.Bockris JOM, “ The origin of ideas on a Hydrogen Economy and its solution to the decay of the environment”, International Journal of Hydrogen Energy, 27(7-8), (2002), 731-740.
7.Bruce E. Rittmann, Perry L. McCarty, “Environmental Biotechnology: Principle and Applications International Edition”, McGraw-Hill, New York , (2001).
8.Banerjee, A., Elefsiniotis, P. and Tuhtar, D. “Effect of HRT and temperature on the acidogenesis of municipal primary sludge and industrial wastewater ”, Water Science and Technology, 38(9), (1998) , 417-423.
9.Boddireddy Sridevi and M. A. Singara Charya, “Isolation, identification and screening of potential cellulase-free xylanase producing fungi”, African Journal of Biotechnology, 10(22), (2011) , 4624-4630.
10.Beguin, P. and Aubert, J. P. Cellulase. “In Encyclopedia of Microbiology” ,Ed. Lederberg, J., Vol. 1, (1992b) ,467-477, Academic Press, New York, USA.
11.Beguin, P. “Cloning of cellulase gene” , Crit. Rev. Biotechnol, (1987) ,129-162.
12.Bisaria, V. S. and Ghose, T. K. “ Biodegradation of cellulosicmaterials substrates, microorganisms, enzymes and products”, Enzyme Microb Technol, (1981) , 90-104.
13.Bisaria, V. S. and Mishra, S. “Regulatory aspects of cellulasebiosynthesis and secretion” ,Crit. Rev. Biotechnol, (1989) , 61-103.
14.Bhat M.K., “ Cellulase and related enzymes in biotechnology”, Biotechnol. Adv., (2000) ,355-383.
15.Charles, W., Walker, L.and Cord-Ruwisch, R., “Effect of pre-aeration and inoculumon the start-up of batch thermophilic anaerobic digestion of municipal solid waste”, Bioresour. Technol. 100, (2009) , 2329–2335.
16.Chudoba, P., Capdeville, B. and Chudoba, J. “Explanation of biological meaning of the S0/X0 ratio in batch cultivation”, Water Science and Technology, 26(3-4) , (1992) , 743-750.
17.Charles J. Banks, Michael Chesshire and Anne Stringfellow, “A pilot-scale comparison of mesophilic and thermophilic digestion of source segregated domestic food waste”, Water Science and Technology,, 58(7), (2008), 1475-1481.
18.Chen, W. S. and Huang, Y. L., “Removal of Dinitrotoluenes and Trinitrotoluene From Industrial Wastewater by Ultrasound Enhanced with Titanium Dioxide,” Ultrasonics Sonochemistry, 18(5), (2010),1232-1240.
19.Chen Wen-Ching, Shur-Geng Doong and Wen-Chin Chen, “The Strategy and Bioenergy Potential for Kitchen Waste Recycling in Taiwan”, Journal of Environmental Engineering and Management, 18(4), (2008), 281-287.
20.Chen Yinguang, Jiang Su, Yuan Hongying, Zhou Qi and Gu Guowei., “Hydrolysis and acidification of waste activated sludge at different pHs”, Water Res Technol, 41, (2007) .
21.Cosgrove . “Cell Walls Structures, Biogenesis, and Expansion”, Plant Physiology, (1998) ,409-443.
22.Das and Veziroglu TN, “Hydrogen production by biological processes: a survey of literature”. Int J Hydrogen Energy, 26, (2001) ,13-28.
23.Dohanyos, M., J. Zabranska, J. Kutil, and P. Jenicek, “Improvement of anaerobic digestion of sludge”, Water Science and Technology, 49(10), (2004), 89-96.
24.Elefsiniotis, P. and Oldham,W. K.“Effect of HRT on acidogenic digestion of primary sludge”. Journal of Environmental Engineering, 120(3), (1994) , 645-660.

25.Feng, J. and Johnson, D.C., “Electrocatalysis of anodic oxygen-transfer reactions: evolution of ozone”, Electrochem. Soc., 141, (1994), 2708.
26.Gumersindo, F., Manuel, S., Ramon, U. and Juan, M. L., “Sodium Inhibition in the anaerobic digestion process : antagonism and adaptation phenomena”, Enzyme And Micrb. Tech., 17, (1995), 180-188.
27.Goel, B., D. C. Pant, and V. V. N., Kishore “ Two-Phase Anaerobic Digestion of Spent Tea Leaves for Biogas and Manure Generation”, Bioresource Technology, 80(2), (2001), 153-156.
28.Girovich, M. J. “Biosolids Treatment and Management”, Marcel Dekker Inc., New York, (1996).
29.Gavala, H.N., Yenal, U., Skiadas, I.V., Westermann, P. and Ahring, B.K., “Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge, Effect of pre-treatment at elevate temperature”, Water Res., 37, (2003).
30.Gonzales HB, Takyu K, Sakashita H, Nakano Y, Nishijima W and Okada M, “Biological solubilization and mineralization as novel approach for the pretreatment of food waste”, Chemosphere, 58, (2005), 57-63.
31.Hartmann H. and B.K. Ahring, “A novel process configuration for anaerobic digestion of source-sorted household waste using hyper-thermophilic post-treatment”, Biotechnology and Bioengineering, 90 (7), (2005), 830-837.
32.Han S. K., Shin H. S., Song Y. C., Lee C. Y. and Kim S. H., “Novel anaerobic process for the recovery of methane and compost from food waste ”, Water Science and Technology, 45(10) , (2002),313~319.
33.Haug, R.T., LeBrun, T.J. and Tortorici, L.D., “Thermal pre-treatment of sludges, a field demonstration”, J. Water Pollut. Control Fed., 55, (1983), 23-34.
34.Hea, G. Xue, B. Z. Wang., “Activated sludge ozonation to reduce sludge production in membrane bioreactor (MBR)”, Journal of Hazardous Materials,135, (2006), 406-411.
35.Harrison, S.T.L. “Bacterial cell disruption: a key unit operation in the recovery of intracellular products,” Biotechnol. Adv. (1991), 217–240.
36.Jeyaseelan S. and Matsuo T., “Effects of phase separation in anaerobic digestion on different substrates”, Water Science and Technology, 31(9), (1995), 153-162.
37.Joseph C. G., Puma G. L., Bono A. and Krishnaiah D., “Sonophotocatalysis in advanced oxidation process: A short review”, Ultrasonics Sonochemistry, 16(5), (2009), 583-589.
38.Khalid A.,Arshad M.,Anjum M.,Mahmood T. andDawson L., “The anaerobic digestion of solid organic waste”, Waste Management ,31, (2011) ,1737–1744
39.Kepp, I. Machenbach, N. Weisz and O.E. Solheim., “Enhanced stabilisation of sewage sludge through thermal hydrolysis-three years of experience with full scale plant”, Water Science and Technology, 42(9), (2000) , 89-96.
40.Kumar R, Singh S and Singh OV, “Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives”, Journal of Industrial Microbiology and Biotechnology 35(5), (2008),377-391.
41.Kuga, S., and Brown, R. M. Jr. “ Physical structure of cellulosemicrofibrils implications for biogenesis. In Biosynthesis and biodegradation of cellulose” ,Eds. Haigler, C. H. and Weimer, P. J., (1991) ,125-142. Marcel Dekker, New York, USA.
42.Lay, J. J. “ Modeling and optimization of anaerobic digested sludge converting starch to hydrogen”. Biotechnology and Bioengineering, 68(3), (2000) , 269-278.
43.Lay, J.J., Li, Y.L., Noike, T., Endo, J. and Ishimoto, S., “Analysis of environmental-factors affecting methane production from high-solid organic waste”, Water Science and Technology, 36(6-7), (1997), 493-500.
44.Li Y. Y., O. Mizuno, T. Miyahara, T. Noike and K. Katsumate., “Ecological analysis of the bacteria system in a full-scale egg-shaped digester treating sewage sludge”, Water Science and Technology,, 36(6-7),(1997), 471-478.
45.Liu T. and Sung S., “Ammonium inhibition on thermophilic aceticlastic methanogens”, Water Science and Technology, 45(10), (2002), 113-120﹒
46.Lee.D., Y ., Ebie Y., Xu K.Q., Li Y., Inamori Y., “Continuous H2 and CH4 production from high-solid food waste in the two-stage thermophilic fermentation process with the recirculation of digester sludge”, Bioresource Technology ,101, (2010) , S42–S47
47.Lee H. S. and Rittmann B. E., “Evaluation of Metabolism Using Stoichiometry in Fermentative Biohydrogen”, Biotechnology and Bioengineering, 102(3) , (2009) ,749-758.
48. Laclos H. F.and Y. Membrez, “ Co-digestion of food waste and used oil: a suitable tool for energy production”, proceeding for 4th International Symposium of Anaerobic Digestion of Solid Waste”, Copenhagen, Denmark, Aug. 31-Sep.2.,(2005), 611-614.
49.Lee, D.J. and Mueller, J.A. “Preliminary Treatment. In Sludge into Biosolids”. Ed. L”.Spinosa and P. A. Vesilind, International Water Association, UK, ( 2001).
50.Langlais, B., Reckhow, D. A., and Brink, D. B., “Ozone in water Treatment-Application and Engineering”, Lewis Publishers, (1991).
51.Raimbault M, “ General and microbiological aspects of solid substrate fermentation Electronic”, Journal of Biotechnology, 1(3) , (1998).
52.Mitchell DA, Krieger N and Berovic M, “Solid-State Fermentation Bioreactors-Fundamentals of Design and Operation”, Springer, (2006).
53.Marasjlian N. and El-Fadel M., “The effects of food waste disposers on municipal waste and watstwater management”, Waste Management &; Reseach, 23(1), (2005), 20-31.
54.Mizuno, O., Dinsdale, R., Hawkes, F. R., Hawkes, D. L. and Noike, T. “Enhancement of hydrogen production from glucose by nitrogen gas sparging” , Bioresource Technology, 73(4), (2000) , 59-65.
55.McCarty P.L. “Anaerobic waste treatment fundamentals-part two, environmental requirements and control”, Public Works, 95(10), (1964) ,123-126.
56.Moussavi, H. Asilian and A. Jamal, “Effect of ozonation on reduction of volume and mass of waste activated sludge”, J. Appl. Sci. Res., 4, (2008), 122-127.
57. Mojtaba, A., Ali, T., Gholamreza, M. and Mohamadali, A., “Municipal Landfill Leachate Treatment by Advanced Oxidation Process (Ultrasound/H2O2) ” , Laboratory Medicine, 17(4), (2012),5-10.
58.Nishio N. and Nakashimada Y. “Recent Development of Anaerobic Digestion Processes for Energy Recovery from Wastes”, Journal of Bioscience and Bioengineering, 103(2), (2007), 105-112.
59.Nielsen H. B. and I. Angelidaki “Co-digestion of manure and industrial organic waste at centralized biogas plants: process imbalances and limitations”, Water Science and Technology, 58(7),(2008), 1521-1528.
60.Owen W. F., Stuckey D. C., Healy Jr J. B., Young L. Y. and McCarty P. L., “Bioassay for monitoring biochemical methane potential and anaerobic toxicity”, Water Research 13(6), (1979),485-492.
61.Pavlostathis, S. G. and Giraldo-Gomez E., “Kinetics of anaerobic treatment”, Water Science and Technology, 24(8), (1991), 35-59.
62.Pérez-Elvira and F. Fdz-Polanco, “Improving anaerobic digestion by physico-chemical pretreatment”, International Workshop on Anaerobic Digestion. Narbone. France. (2009).
63.Richmond, P. A. “Occurrence and functions of native cellulose. In biosynthesis and biodegradation of cellulose” , Eds. Haigler, C. H. andWeimer, P. J., (1991) ,5-23. Marcel Dekker, New York, USA.
64.Rasheed, Q. J., Pandian, K., and Muthukumar, K., “Treatment of Petroleum Refinery Wastewater by Ultrasound-Dispersed Nanoscale zero-valent Iron Particles” , Ultrasonics Sonochemistry, 18(5), (2011),1138-1142.
65. Richmond, P. A. “Occurrence and functions of native cellulose. In biosynthesis and biodegradation of cellulose” , Eds. Haigler, C. H. and Weimer, P. J., (1991) , 5-23. Marcel Dekker, New York, USA.
66. Scherer, P. A., Vollmer, G. R., Fakhouri, T. and Martensen, S., “Development of a methanogenic process to degrade exhaustively the organic fraction of municipal “gray waste” under thermophilic and hyperthermophilic conditions”, Water Science and Technology, 41(3), (2000), 83-91.
67.Scheminske, R. Krull, D. C. Hempel., “Oxidative treatment of digested sewage
sludge with ozone.”, Water Science and Technology, 42(9), (2000), 151-158.
68.Suslick, K. S., “Sonochemistry Science”, (1990),1439-1445.
69.Suryanarayanana.T. S. N. Thirunavukkarasub and M.B.govindarajulub,“Fungal endophytes and bioprospecting”,fungal biology reviews,23, (2009), 9-19.
70.Sotelo, J. L. and B., F.J., “Henry’s law constant for the ozone-water system”, Water Research, 23, (1989), 1239-1246.
71.Subramaniyan, S., and Prema, P. “Biotechnology of microbialxylanases enzymology, molecular biology, and application” ,Crit. Rev.Biotechnol, (2002) ,22: 33-64.
72.Thomashow, M.F., “Role of cold-responsive genes in plant freezing tolerance”, Plant Physiology, 118, (1998), 1-8.
73.Tsai S.H., Liu C.P. and Yang S.S., “Microbial conversion of food wastes for biofertilizer production with thermophilic lipolytic microbes”, Renewable Energy, 32, (2007), 904-915.
74.Tomoyuki H., S. Haruta, Y. Ueno, M. Ishii and Y. Igarashi, “Dynamic Transition of a Methanogenic Population in Response to the Concentration of Volatile Fatty Acids in a Thermophilic Anaerobic Digester. ” Applied Environmental Microbiology, 72 , (2006) ,1623-1630 .
75.Wang Zhi-jun and Wang Wei., “Thermal hydrolysis test of surplus sludge”, China Environmental Science, (2005), 56-60.
76.Weemaes, H. Grootaerd, F. Simoens and W. Verstraete, “Anaerobic digestion of ozonized biosolids”, Water Res., 34(8), (2000), 2330-2336.
77.Wang, X.Y. Liu, C.M. Kao and O. Stabnikova, “Digestion of pre-treated food waste in hybrid anaerobic solid–liquid (HASL) system”, J. Chem. Technol. Biotechnol., 81, (2006), 345-351.
78.Wu, D., Yang, Z., Wang, W., Tian, G., Xu, S. and Sims, A., “Ozonation as an advanced oxidant in treatment of bamboo industry wastewater,” Chemosphere, 88(9), (2011),1108–1113.
79.Xiao, B. Y., Han, Y. P. and Liu, J. X., “Evaluation of biohydrogen production from glucose and protein at neutral initial pH”, International Journal of Hydrogen Energy, 35(12), (2010), 6152-6160.
80.Yu, H. and Huang, G.H.,. “Effects of sodium as a pH control amendment on the composting of food waste”. Bioresour. Techno.l. 100, (2009), 2005–2011.
81.Yang, S. S. “Protein enrichment of sweet potato residue with amylolytic yeasts by solid state fermentation” , Biotechnol. Bioeng. ,32, (1988) ,886-890.
82.Yutake Yoneyama and Katsuhiko Takeno, “Co-digestion of domestic kitchen waste and night soil sludge in a full-scale sludge treatment plant”, Water Science and Technology,, 45(10), (2002),281–286.
83.Yang, X., Chen, H., Gao, H. and Li, Z. “Bioconversion of corn straw by coupling ensiling and solid-state fermentation” , Bioresource Technol. ,78, 2001) , 277-280.
84.Yeom, K.R. Lee, Y.H. Lee, K.H. Ahn and S.H. Lee, “Effects of ozone treatment on the biodegradability of sludge from municipal wastewater treatment plants”, Water Science and Technology, 46(4-5), (2002), 421-425.
85.Zhu, H., Stadnyk, A., Béland, M. and Seto, P., “Co-production of hydrogen and methane from potato waste using a two-stage anaerobic digestion process”, Bioresource Technology, 99(11), (2008), 5078-5084.
86.Zhang R., El-Mashad H.M., Hartman K., Wang F., Liu G., Choate C. and Gamble P., “Characterization of food waste as feedstock for anaerobic digestion”, Bioresource Technolog, 98, (2007).
87.經濟部能源局,「一百零二年年報」,2013年。
88.行政院環境保護署,「環保統計資料庫,執行機關垃圾清理狀況」,2011年。
89.吳宜曄,「 以批次試驗及兩段式串聯反應槽提升甘蔗渣厭氧產氫之可行性研究」, 國立臺中教育大學環境教育及管理研究所碩士論文,2010年。
90.吳建忠,「溫度對木糖醱酵產氫之影響」,私立逢甲大學碩士論文,2005年。
91.蔡書憲,「廚餘堆肥製作及品質之探討」,國立臺灣大學農業化學研究所碩士論文,2003年。
92.陳怡傑,「以厭氧流體化床進行廚餘過篩液及狼尾草之氫醱酵程序研究」,國立成功大學環境工程學系碩士論文,2009年。
93.陳文卿,「九十一年度廚餘清運與回收再利用措施輔導及評鑑」期末報告,行政院環保署委託計畫,2002年。
94.陳文卿,「九十七年度廚餘清運與回收再利用措施輔導及評鑑」期末報告,行政院環保署委託計畫,2008年。
95.陳文欽,陳文卿,劉俊清,陳國帝,「廚餘厭氧消化之處理程序評估」,第18屆廢棄物處理技術研討會」,2006年,4-51頁。
96.陳郁仁,「前氧化劑對藻類去除影響之研究」,國立成功大學環境工程研究所碩士論文,2001年。
97.陳俞穎,「下水污泥前處理減量技術比較之研究」,國立台北科技大學環境工程與管理研究所碩士論文,2008年。
98.楊萬發,楊盛行,鄭正勇,陳文卿,馬鴻文,「廚餘及堆肥成品中有害成份調查、肥力及土壤列管評估計畫暨廚餘資源化設施、產品品質標準建制及市場開發近、中程策略規劃」期末報告,臺北市政府環境保護局委託計畫,2002年
99.楊易霖,「有機廢棄物之厭氧消化-前處理及溫度之影響」,屏東科技大學環境工程與科學系碩士論文,2003年。
100.楊瀅臻,「利用臭氧與高壓循環系統破裂藻體以提高厭氧消化之甲烷產能」,臺灣大學環境工程學研究所碩士論文,2011年。
101.卓聖育,「有機廢棄活性污泥與廚餘共消化減量及能源回收之研究」,私立長榮大學職業安全與衛生系碩士論文,2008年。
102.朱敬平、李篤中,「污泥處置(II):污泥之前處理」,台大工程學刊,第82期,2001年,49-76 頁。
103.鄭凱尹,「高溫厭氧消化廚餘之研究」,屏東科技大學環境工程與科學系碩士論文,2001年。
104.鄭皆達、謝馥揚、林秋裕,「緩衝劑對厭氧產氫機制之研究」,水土保持學報,第36 卷,2004年,1-18頁。
105.王清信,「以國人生活型態探討家庭廚餘回收裝置之設計研究」,大同大學工業設計研究所碩士論文,2007年。
106.王馨儀,「以牛糞肥中嗜熱厭氧菌群分解纖維素產乙醇之研究」,東海大學環境科學系碩士論文,2006年。
107.張清智,「臭氧前處理對廚餘厭氧消化程序之效能提升探討」,元培科技大學環境工程衛生系碩士論文,2012年。
108.黃仁唏,「廚餘回收再利用(二)」,行政院環保署中部辦公室,2001年。
109.黃亦聖,「廚餘厭氧醱酵與資源化技術探討」,元培科技大學生物技術研究所碩士論文,2010年。
110.黃議生,「厭氧生物系統共消化污泥菌相檢測之研究」,輔英科技大學生物技術系碩士論文,2010年。
111.黃啟裕,「纖維素產氫技術在生質能源之發展」,東海大學環境科學與工程系學刊,第13期,2008年。
112.黃淳知,「狼尾草與廚餘利用好氧式生物滴濾床共醱酵水解纖維素產氫研究」,國立成功大學環境工程學系碩士論文,2011年。
113.黃柏仁,「利用紫外線/臭氧處理氣相中1,3-丁二烯與乙酸甲氧基異丙酯之反應動力研究」,國立中山大學環境工程研究所博士論文,2005年。
114.黃美燕,「嗜熱厭氧生物降解纖維素產甲烷程序最佳化之探討」,東海大學環境科學與工程學系研究所碩士論文,2005年。
115.賴俊吉,「厭氧生物產氫技術發展近況」,環境工程會刊,14 (2),24-29。
116.賴耿陽編譯化工過濾理論實務,2003年。
117.林凱隆,「重金屬對厭氧消化法酸生成相之影響」,逢甲大學土木與水利工程研究所碩士論文,1911年。
118.洪仁陽譯, 「厭氧程序處理工業廢水及都市污水之設計」,國立編譯館,1998年。
119.呂忠翰,「模擬有機物質厭氧消化之固體物減量及能源回收之研究」,長榮大學職業安全與衛生學系碩士論文,2009年。
120.施富翔,「臭氧及催化臭氧程序分解地下水中油品污染物之研究」,弘光科技大學環境工程研究所碩士論文,2009年。
121.張思凡,「都市生活污水處理廠污泥資源化再利用之回顧及展望」,環境工程會刊,第11卷第2期,2000年,59-80頁。
122.廖大牛,「試算台灣森林碳固定機能」,台灣林業,2009年。
123.齊倍慶,「從堆肥中篩選纖維素分解酵素生產菌及其酵素性質研究」,國立清華大學生命科學研究所碩士論文,2000年。
124.尤智立,「嗜高溫纖維分解菌纖維分解酵素的探討」,國立中山大學生物科學研究所碩士論文,2003年。
125.謝孟宏,「利用批次試驗及SBR提升稻殼產氫之可行性研究」,台中教育大學環境教育研究所碩士論文,2010年。
126.周柏伸,「利用酸前處理提高纖維酵素水解蔗渣效率之研究」,國立臺灣大學生物產業機電工程學研究所碩士論文,2006年。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔