跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/03 22:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳勁宏
研究生(外文):Chin-Hone Chen
論文名稱:以二氧化鈦光觸媒降解溶液中之納乃得與巴拉松
論文名稱(外文):Degradtion of Methomyl and Parathion in Aqueous Solutions Using Tio2 Photocatalysts
指導教授:莊瑞鑫莊瑞鑫引用關係
指導教授(外文):Ruey-Shin Juang
口試委員:林錕松邱垂煥
口試委員(外文):Kuen-Song LinChew-Hann Chiu
口試日期:2013-01-11
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:114
中文關鍵詞:二氧化鈦光催化巴拉松納乃得農藥
外文關鍵詞:TiO2PhotocatalysisParathionMethomylpesticides
相關次數:
  • 被引用被引用:2
  • 點閱點閱:412
  • 評分評分:
  • 下載下載:76
  • 收藏至我的研究室書目清單書目收藏:0
本實驗採以商用型Degussa P-25 TiO2觸媒,並使用高壓汞燈(400 W)做為光降解納乃得(Methomyl)與巴拉松(Parathion)農藥試驗溶液中之光源,並藉由改變TiO2觸媒添加量 (0 g~1.5 g)、納乃得與巴拉松濃度(10 mg/L~30 mg/L)、pH值 (4~10) 改變等條件進行實驗,以探討納乃得(Methomyl)與巴拉松(Parathion)在TiO2光觸媒降解過程中的降解變化、pH對降解的影響及礦化程度等差異性與效果。
由實驗結果發現在TiO2/UV 系統中,納乃得與巴拉松之濃度會在0.5 h ( t )內會快速降解,其降解趨勢可以擬一階反應描述,而其反應速率常數會隨著納乃得與巴拉松濃度增加而減少、隨著TiO2濃度增加而增加。若添加過多觸媒則會因遮蔽效應,而延長光催化效率的時間與降低降解效率,且由實驗觀察出(0 g~1.5 g)、初始納乃得與巴拉松農藥水溶液,兩者在降解的趨勢非常的相似,其濃度會在30 min (t)內快速降低,而30 min (t)後的降解速率則逐漸趨向線性呈現,並由降解實驗結果可得知,本實驗之TiO2 / 納乃得的最佳濃度0.75 g/L,巴拉松的最佳濃度1 g/L,pH值在pH4(弱酸)、pH10(弱鹼)時,由於有溶液中的電子加入反應機制中、及呈現水解效果,故皆有較高的降解效率。
利用紫外線/可見光分光光譜儀 (UV / Vis)分析,納乃得與巴拉松在TiO2/UV系統中,溶液反應所得之氨氮( NH4十 )及硝酸鹽氮( NO2-)與亞硝酸鹽氮( NO3- )與磷酸鹽 ( PO4- )等分析結果,由於強氧化環境的作用,光催化氧化處理能使它們完全無機化,並且定量生成亞硝酸鹽氮( NO3- )、磷酸鹽 ( PO4- )、二氧化碳(CO2)等無機產物。
雖然到目前為止,運用此方法來降解廢水中之有機污染物質並非普及,而本文將TiO2光降解技術應用到含納乃得與巴拉松廢水的降解,用以解決自然水體中的農藥廢水的淨化處理及有關的環境問題,克服了傳統廢水處理技術淨化不徹底等缺點及可節省高成本的土地、時間與能源消耗,是一種處理效率高且可以避免二次污染的淨化技術。
The experimental mining Commercial Degussa P-25 TiO2 catalyst and as photodegradation Methomyl (Methomyl), and Ba Lasong (Parathion) pesticide test solution, the light source, the use of high-pressure mercury lamp (400 W) by change the TiO2 catalyst loading (0 g to 1.5 g), Methomyl Bala Song concentration (10 mg / L to 30 mg / L), pH values (4 to 10) and changes in condition to conduct experiments to explore satisfied trusted (Methomyl), and Ba Lasong (Parathion) Degradation of TiO2 photocatalytic degradation process of pH on the degradation and mineralization of the differences and effect.
Experimental results found in TiO2/UV system, Methomyl concentration and Bala Song of 0.5 h (t) will rapidly degrade, degradation trends can be a first-order reaction is described, and its reaction rate constant with The Methomyl Bala Song concentration is reduced, increasing with the increase in TiO2 concentration. If you add too much catalyst will be due to the shadowing effect, time and extend the photocatalytic efficiency reduce degradation of efficiency, and the experimental observation (0 g to 1.5 g), the initial Methomyl, and Bala Song pesticide aqueous solution, both very similar to the trend of degradation of its concentration at 30 min (t) quickly reduced, while the rate of degradation after 30 min (t) is gradually moving towards linear presented by degradation results show that under the experiment TiO2 / Methomyl optimum concentration of 0.75 g / L, Bala Song the optimal concentration of 1 g / L, and the pH value pH4 (weak acid), pH10 (weak), since the electrons in the solution was added to the reaction mechanism , presented Hydrolysis Both contain a higher degradation efficiency.
The use of UV / visible spectrophotometer (UV / Vis) analysis, Methomyl Bala Song TiO2/UV system, the solution obtained by the reaction of ammonia (NH4 +) and nitrate nitrogen (NO2-) and nitrite nitrogen (NO3-) and phosphate (PO4-)analytical results, due to the strong oxidizing environment, photocatalytic oxidation treatment to make them completely inorganic, and quantitative formation of nitrite nitrogen (NO3-), phosphate (PO4-), carbon dioxide (CO2) and other inorganic product.
Although so far, the use of this method of degrading organic pollutants in the wastewater is not popular, and the article will TiO2 photodegradation technology applied to a containing methomyl Bala Song wastewater degradation, pesticide wastewater to solve the natural water bodies purification and environmental issues related to overcome the conventional wastewater treatment technologies purification not completely disadvantages and can save the high cost of land, time and energy consumption, a high treatment efficiency and secondary contamination can be avoided purification technology.
摘要………………………………………………………………………………………… I
Abstract ……………………………………………………………………………………..II
誌謝…………………………………………………………………………………………Ⅳ
目錄…………………………………………………………………………………………Ⅴ
圖目錄………………………………………………………………………………………IX
表目錄…………………………………………………………………………………… ⅩII
第一章 緒論…………………………………………………………………………………...1
1.1研究緣起…………………………………………………………………………….1
1.2研究目的…………………………………………………………………………….2
1.3研究流程…………………………………………………………………………….3
第二章 文獻回顧……………………………………………………………………………...4
2.1臺灣農藥使用與現況……………………………………………………………….4
2.1.1臺灣的農藥管理…………………………………………………………………..5
2.1.2農藥的影響及傳輸途徑…………………………………………………………..6
2.1.3農藥銷售現況……………………………………………………………………..7
2.1.4中國農藥使用與現況……………………………………………………………10
2.1.5農藥類別與區分…………………………………………………………………11
2.1.6農藥之毒性與安全………………………………………………………………12
2.1.7農藥對生態環境的影響…………………………………………………………14
2.2氨基甲酸(酯)鹽類農藥與有機磷農藥…………………………………………….15
2.2.1氨基甲酸鹽(酯)類農藥…………………………………………………………..15
2.2.2納乃得農藥結構及物理化學性質………………………………………………17
2.2.3有機磷類農藥……………………………………………………………………19
2.2.4巴拉松農藥結構及物理化學性質………………………………………………22
2.2.5水體優養化………………………………………………………………………24
2.3常用農藥廢水的處理方式…………………………………………………………25
2.3.1溶劑萃取回收法…………………………………………………………………26
2.3.2生物處理法………………………………………………………………………26
2.3.3活性碳吸附法……………………………………………………………………27
2.3.4化學氧化法………………………………………………………………………27
2.3.5濕式空氣氧化技術………………………………………………………………28
2.3.6電解法…………………………………………………………………………….28
2.3.7光催化法…………………………………………………………………………28
2.4高級氧化處理程序(Advanced Oxidation Processes,AOPs)…………………….31
2.4.1光觸媒降解技術…………………………………………………………………31
2.4.2二氧化鈦(TiO2)特性………………………………………………………….....32
2.4.3 TiO2光觸媒催化原理…………………………………………………………..34
2.4.4二氧化鈦(TiO2)的超親水(油)特性……………………………………………38
2.4.5二氧化鈦反應機制…………………………………………………………… 39
2.4.6二氧化鈦的用量……………………………………………………………… 41
2.4.7添加劑的種類………………………………………………………………… 41
2.4.8觸媒的毒化…………………………………………………………………… 42
2.4.9二氧化鈦的來源……………………………………………………………… 42
2.4.10晶相分析………………………………………………………………………44
2.4.11表面結構分析…………………………………………………………………47
2.5反應條件與影響…………………………………………………………………49
2.5.1光強度及光波長……………………………………………………………… 49
2.5.2光解半衰期……………………………………………………………………49
2.5.3光催化之動力學………………………………………………………………51
2.5.4降解反應動力模式……………………………………………………………53
2.6氧氣的催化反應…………………………………………………………………55
2.7礦化作用…………………………………………………………………………55
第三章 研究內容、材料與方法…………………………………………………………….57
3.1研究內容…………………………………………………………………………57
3.2試劑製備方法及步驟……………………………………………………………57
3.2.1檢量線溶液之配製……………………………………………………………57
3.2.2市售巴拉松及納乃得溶液之配製……………………………………………57
3.2.3 pH調整試劑……………………………………………………………………57
3.2.4檢量線配製方法……………………………………………………………… 58
3.3常見光源與選擇…………………………………………………………………59
3.3.1氙燈(xenon lamp)………………………………………………………………59
3.3.2高壓汞燈………………………………………………………………………60
3.3.3反應器光源選擇………………………………………………………………61
3.3.4反應器裝置……………………………………………………………………63
3.4背景與光解試驗分析方法………………………………………………………65
3.4.1吸附反應試練…………………………………………………………………65
3.4.2暗箱自然降解試驗……………………………………………………………65
3.4.3自然日光光解試驗……………………………………………………………66
3.4.4單一農藥UV光解試驗………………………………………………………66
3.4.5不同pH值對納乃得與巴拉松溶液降解之影響……………………………66
3.4.6轉速對於納乃得、巴拉松溶液試驗之影響…………………………………67
3.4.7含氮化合物中間產物的分析方法……………………………………………67
3.4.8含磷化合物中間產物的分析方法……………………………………………67
3.4.9總有機碳測定分析……………………………………………………………68
第四章 結果與討論………………………………………………………………………….69
4.1背景實驗…………………………………………………………………………69
4.1.1吸附反應試驗結果……………………………………………………………69
4.1.2納乃得、巴拉松在暗箱自然降解試驗結果…………………………………72
4.1.3自然日光光解試驗結果………………………………………………………74
4.1.4自然日光+TiO2觸媒光解試驗結果………………………………………… 77
4.2單獨UV光解及TiO2/UV之不同參數試驗結果………………………………79
4.2.1 UV光解實驗之分析結果…………………………………………………… 79
4.2.2 TiO2/UV之試驗結果………………………………………………………… 81
4.2.3不同pH值對納乃得、巴拉松溶液降解之試驗結果……………………… 89
4.2.4轉速對納乃得、巴拉松溶液降解之影響結果………………………………92
4.2.5納乃得、巴拉松溶液TOC濃度變化與TOC去除率………………………92
4.3反應速率方程式…………………………………………………………………93
4.4結構關係對降解效果的影響……………………………………………………99
4.5降解產物之鑑定…………………………………………………………………100
4.5.1納乃得經二氧化鈦光觸媒反應程序中之降解產物鑑定……………………100
4.5.2巴拉松經二氧化鈦光觸媒反應程序中之降解產物鑑定……………………102
第五章 結論………………………………………………………………………………...104
第六章 參考文獻…………………………………………………………………………...106
A. Galadi, M. Julliard, Photosensitized oxidative degradation of pesticides,Chemosphere 33, 1-15(1996).
Alaton, I.A., Balcioglu, I.A., Bahnemann, D.W., Advanced Oxidation of a reactive dye bath effluent: Comparison of O3, H2O2/UV-C and TiO2/UV-A process, Wat. Res. 36 , 1143-1154(2002).
Ambrus, A. Estimation of sampling uncertainty for determination of pesticide residues in plant commodities. J. Environ. Sci. Health Part B 44, 627-639(2009).
Aungpradit T,Sutthivaiyakit P,Martens D,Photocatalytic degradation oftriazophos in aqueous titanium dioxide suspension:Identification of intermediates and degradation pathways(J), Journal ofHazardous Materials, 146(1-2,19),204-213(2007).
Bahnemann, D., Bockelmann, D., Goslich, R., “Mechanistic studies of water detoxification in illuminated TiO2 suspensions,” Solar Energy Materials, 24, 564-583(1991).
Bai, Y.H., Zhou, L., Wang, J. Organophosphorus pesticide residues in market foods in Shaanxi area, China. Food Chem. 98, 240-242(2006).
Basfar, A.A., Mohamed, K.A., Al-Abduly, A.J., Al-Kuraiji, T.S., Al-Shahrani, A.A. Degradation of diazinon contaminated waters by ionizing radiation. Radiat.Phys. Chem. 76, 1474-1479(2007).
Burrows HD, Canle LM, Santaballa JA, Steenken S.Reaction pathways and mechanisms of photodegradation of pesticides. J Photochem Photobiol. B: Biol. 67:71-108(2002).
Bohmont, B. L. The Standard Pesticide User’s Guide 5th Edition(2000).
Cécile Z , Pat rick M ,Bernard L. Photot ransformation of selected rganophosphorus pesticides in dilute aqueous solutions. Wat .Res. 38 (9) ,2305-2314(2004).
Chan, K. H., Chu, W. “Model applications and mechanism study on the degradation of atrazine by Febton’s system” ,Journal of Hazardous Materials,118,277-237(2005).
Dekundy A, aminski RM and Turski WA, NMDA antagonists exert distinct effects in experimental organophosphare or carbamate poisoning in mice.Toxicol Appl Pharmacol. 219, 114-121 (2007).
Dhananjeyan, M.R.; Annapoorani, R.; Renganathan, R. A comparative study on the TiO2 mediated photo-oxidation of uracil, thymine and 6-methyluracil, Journal of Photochemistry and Photobiology A: Chemistry, 109, 147-153(1997).
Dill J.R., Smith P.W., Central Nervous System Effects of Chronic Exposure to Organophosphate Insecticides, Aerosp. Med. 35, 475(1964).
Ecobichon D.J., Toxic effects of pesticides. In:Amdur M.O., Doull, Klaadden C.D. Casarett and Doull's Toxicoclogy: The basic science of poisons: Pergramon Press, New York , 565-622 (1991).
Errki O.T., Work-related respiratory disorders among finish farmers,Am. J. Indust. Med. 18, 269-272(1990).
Evgenidou, E., Konstantinou, I., Fytianos, K., Albanis, T. Study of the removal of dichlorvos and dimethoate in a titanium dioxide mediated photocatalytic process through the examination of intermediates and the reaction mechanism.J. Hazard. Mater. 137, 1056-1064(2006).
E. Gal, P. Aires, E. Chamarro, S. Esplugas, Photochemical degradation of parathion in aqueous solutions, Water Res. 26, 911-915(1992).
Fernadez-Alba A., D. Hernando, A. Aguera, J. Caceres and S. Malato, Toxicity Assays: A Way for Evaluating AOPs Efficiency, Water Research, Vol.36, 4255-4262(2002).
Floesser-Mueller H, Schwack W. Photochemistry of organophosphorus insecticides. Rev Environ Contam Toxicol;French Environmental Water Control Agency (DDASS).Personal communication. 172, 129-228(2001).
Fujishima, A.; Honda, A., ElectroChemical Photolysis of Water at a Semiconductor Electrode, Nature, 238:372-375 (1972).
Getoff, N., Radiation induced decomposition of biological resistant pollutant in water, Applied Radiation and Isotopes, 37, 1103-1109(1986).
Goncalves, C., Dimou, A., Sakkas, V., Alpendurada, M.F., Albanis, T.A. Photolytic degradation of quinalphos in natural waters and on soil matrices under simulated solar irradiation. Chemosphere 64, 1375-1382(2006).
Guenzi, W. D. , Pesticides in Soil and Water, Soil Science Society of America, Wisconsin( 1974).
Harada, H., Ueda, T., Sakata, T., Semiconductor effect on the selective photocatalytic reaction of .alpha.-hydroxycarboxylic acids, The Journal of Physical Chemistry, 93, 1542-1548(1989).
Hashimoto, K.; Wasada, K.; Toukai, N. Photocatalytic oxidation of nitrogen monoxide over titanium(IV) oxide nanocrystals large size areas, Photochem. Photobiol. A: Chem., 136,103-109(2000).
Hermann, J. M., Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants, Catalysis Today, 53, 115-129(1999)
Hernandez-Borges, J., Cabrera, J.C., Rodriguez-Delgado, M.A. Analysis of pesticide residues in bananas harvested in the Canary Islands (Spain). Food Chem. 113, 313-319(2009).
Hislop A. and R. Bolton, The Photochemical Generation of Hydroxyl Radicals in the UV-vis/Ferrioxalate/H2O2 System,Environmental Science & Technology, Vol.33, 3119-3126(1999)
Hoffmann M R, Martin S T, Choi W et al., Chem.Rev. 95, 69(1995).
H. Wyman Dorough. Metabolism of Insecticidal Methylcarbamates in Animales. Journal of Agricultural and Food Chemistry,18(6), 1015-1022(1970).
Izumi, I.; Dunn, W.W.; Wilboum, K.O.; Fan F.-R.F; Bard A.J. Heterogeneous photocatalytic oxidation of hydrocarbons on platinized titanium dioxide powders, Journal of Physical Chemistry, 84(24), 3207-3210(1980).
J.F. Cameron, J.M.J. Fre´chet, Photogeneration of organic bases from o-nitrobenzyl-derived carbamates, J. Am. Chem. Soc. 113, 4303-4313(1991).
J. Bachman, H.H. Patterson, Photodecomposition of the carbamate pesticide carbofuran: Kinetics and the influence of dissolved organic matter, Environ. Sci. Technol. 33, 874-881(1999).
Klinghoffer Alec A., Ramon L. Cerro, Martin A. Abraham , Catalytic Wet Oxidation of Acetic Acid Using Platinum on Alumina Monolith Catalyst, Catalysis Today, 40, 59-71(1998).
Land, E.J., Porter, G., Strachan, E., Primary photochemical process in aromatic molecules. Part 6-the absorption spectra and acidity constants of phenoxyl radicals, Trans. Faraday Soc. 57, 1885-1893(1961).
Le Person, A., Mellouki, A., Munoz, A., Borras, E., Martin-Reviejo, M., Wirtz, K. Trifluralin: photolysis under sunlight conditions and reaction with HO radicals.Chemosphere 67, 376-383(2007).
Loh K.C., T.S. Chung, W.F. Ang, Immobilized-cell membrane bioreactor for high-strength phenol wastewater, Journal of Environmental Engineering, 126(1), 75-79(2000).
Malato, S., J. Caceres, A. Aguera, M. Mezcua, D. Hernando, J. Vial, and A. R.Fernaandez-Alba Degradation of imidacloprid in water by photo-Fenton and TiO2 photocatalysis at a solar pilot plant: a comparative study. Environmental Science and Technology. 35, 4359-4366(2001).
Matthews, R. W. Photooxidation of Organic Impurities in Water Using Thin Films of Titanium Dioxides, Journal of Physical Chemistry, 91, 3328-3333(1987).
Matthews, R.W.; Abdullah, M.; Low, C.; Gary, K. Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide, Journal of Physics and Chemistry., 94, 6820-6825 (1990).
Miary, B., Golhan, O., A preliminary investigation on the photocatalytic degradation of a model humic acid, Wat. Sci. Technol. 33, 189-194(1996)
Mills, A. and Morris, S., Photomineralization of 4-chlorophenol sensitized by titanium dioxide:a study of the initial kinetics of carbon dioxide photogeneration, Journal of Photochemistry and Photobiology A: Chemistry, 71(1), 75-83(1993)
Mitsou, K., Koulianou, A., Lambropoulou, D., Pappas, P., Albanis, T., Lekka, M.Growth rate effects, responses of antioxidant enzymes and metabolic fate of the herbicide Propanil in the aquatic plant Lemna minor. Chemosphere 62, 275-284(2006).
M. Kerzhentsev, C. Guillard, J.M. Herrmann, P. Pichat, Photo catalytic pollutant removal in water at room temperature: Case study of the total degradation of the insecticide fenitrothion (phosphorothioic acid o,o-dimethyl-o-(3-methyl-4-nitro-phenyl) ester), Catal. Today 27 215-220 (1996).
Nazeeruddin, M.K., Kay, A., Rodicio, I., Humphry-Baker, R., Muller, E., Liska, P., Vlachopoulos, N., Gratzel, M., Coversion of light to electricity by cis-X2bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium (II) charge-transfer sensitizers (X=Cl- ,Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes, J. Am. Chem. Soc. 115, 6382-6390(1993).
Nelson Durán, Patricio Peralta-Zamora, Sandra Gomes de Moraes, Ronaldo Pelegrini, Mariwalde Freire Jr., Juan Reyes, Héctor Mansilla, Evaluation of ZnO, TiO2 and supported ZnO on the photoassisted remediation of black liquor, cellulose and textile mill effluents.(1998).
Nobuaki Negishia , Taizo Sanoa , Tsutomu Hirakawaa , Fumiko Koiwaa , Chamorn Chawengkijwanichb ,Nuttaporn Pimphab, Glory-Rose Mangat Echaviac Photocatalytic detoxification of aqueous organophosphorus by TiO2 immobilized silica gel , Appl. Catal. B: Environ.G Model,APCATB-12048; No. of Pages 14(2012).
Oancea, P., Oncescu, T. The photocatalytic degradation of dichlorvos under solar irradiation. J. Photochem. Photobiol. A: Chem. 199, 8-13(2008).
Ollis D F, Pelizzetti E, Serpone N, Environ.Sci.Technol. 25(9), 1523(1991).
Ormad, M.P., Miguel, N., Claver, A., Matesanz, J.M., Ovelleiro, J.L. Pesticides removal in the process of drinking water production. Chemosphere 71, 97-106(2008).
Prairie, M. R., Evans, L. R., Stange, B. M.,Martinez, S. L. Environ. Sci. Technol. 27(1976).
Pedigo, L. P. Pest management theory. In: Entomology and Pest Management. Prentice Hall, New Jersey. 691 , 258-306(1999).
Pehkonen SO, Zhang Q., The degradation of organophosphorus pesticides in natural waters: a critical review. Crit Rev Environ Sci Technol. 32,17–72(2002).
Pruden, A.L.; Ollis, D.F., Degradation of chloroform by photoassisted heterogeneous catalysis in dilute aqueous suspensions of titanium dioxide, Enivronmental Science and Technology, 17(10), 628-631(1983).
Romero-Navarro, G., Lopez-Acevesa, T., Rojas-Ochoaa, A., Mejia, C.F. Effect of dichlorvos on hepatic and pancreatic glucokinase activity and gene expression,and on insulin mRNA levels. Life Sci. 78, 1015–1020(2006).
Rosenberg. J., Pesticieds. In: J. LaDou, Ed: Occupational medicine norwark, California, Appleton & Lange, 404-431(1990).
R. Grover, A.J. Cessna (Eds.), Environmental Chemistry of Her bicides, CRC Press, Boca Raton, FL.(1991).
Sakata .A, Wada.S,Okutsu.Y,Shintani.H, & Nakada,Y.Nature,301,493,(1983).
Salvador, P., Gutierrez, C., The role of surface-state in the electroreduction of dissolved nd or photogenerated oxygen on N-TiO2 electrodes, Chem. Phys. Lett. 86, 131-134(1982).
Schramm, J.D., Hua, I. Ultrasonic irradiation of dichlorvos: degradation mechanism. Water Res. 35, 665-674(2001).
Smith, V., Watkinson, A.P., Anodic oxidation of phenol for waste treatment, Chem. Eng. 59, 52-59(1981).
Stafford, U.; Gray, K. A.; Kamat, P. V., Photocatalytic Degradation of 4-Chlorophenol: The Effects of Varying TiO2 concentration and Light Wavelength, Journal of Catalysis, 167, 25-32(1997).
Stumm W. Aquatic Chemical Kinetic, John Wiley & Sons Inc. New York, 415-416(1990).
Sudoh, M., Sasase, T., Yonebayashi, T., Koide, K., Oxidative degradation of aqueous phenol effluent with Fenton's reagent, Kagaku Kogaku Ronbunshu, 70-75Taoda Hiroshi(1984).
S.D. Faust, O.M. Aly,Water pollution by organic pesticides, J. Am. Water Works Assoc. 56, 267-279(1964).
Takata,Y., Hidaka, S., Masuda, M., Ito, T., Pool boiling on a superhydrophilic surface, Int. J. Energy Res. 27 111-119(2003).
Tunesi, S.; Andeson, M., Influence of Chenmlsorption on the Photodecomposition of Salicylic Acid and Related Compounds Using Suspended TiO2, Ceramic Membranes, Journal of Physical Chemistry, 95, 3399-3405(1991).
Turchi, C.S.; Ollis, D.F. Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack, Journal of Catalysis., 122, 178-192 (1990).
US Environmental Protection Agency. Federal Register. 53, 5542(1988).
Vincenzo Augugliaro, Leonardo Palmisano, Mario Schiavello, Antonino Sclafani, Leonardo Marchese, Gianmario Martra, Fausto Miano, Photocatalytic degradation of nitrophenols in aqueous titanium dioxide dispersion, Applied Catalysis. 69,323-340(1991).
Wan HB, Wong MK, Mok CY. Comparative study on the quantum yields of direct photolysis of organophosphorus pesticides in aqueous solution. J Agric Food Chem. 42,2625-30(1994).
Wang, C.C. and Ying, J. Y., Sol-Gel Synthesis and Hydrothermal Processing of Anatase and Rutile Titania Nanocrystals , Chemistry of Materials,11, 3113-3120(1999).
W.M. Abdou, M.M. Sidky, H. Wamhoff, Photochemistry of pesticides. 10. Photodegradation of o,o-diethyl-s(3,4-dihydro-4-ox-obenzo[d][1,2,3]triazin-3-yl-methyl)phophorodithioate (azinphos- ethyl), Z. Naturforsch. B 42907-910(1987).
Wu R J,Chen C C,Chen M H, Titanium dioxide-mediated heterogeneous photocatalytic degradation of terbufos: Parameter study and reaction pathways(J)_Journal of Hazardous Materials, 121, 1-9(2008).
97年國家永續發展指標,行政院永續發展委員會,臺灣(2009)。
Taoda Hiroshi原著,張晶、楊健譯,光觸媒圖解,商周文化事業公司,第24-25頁,臺灣(2003)。
王一雄,「土壤環境污染與農藥」,明文書局,臺灣(1997)。
王建文,「純氧活性污泥法處理綜合性工業廢水之研究」,碩士論文,中央大學,臺灣(2000)。
日本農藥株式會社(Nihon Nohyaku Co, LTD),
網址:http://www.nichino.co.jp/en/(2009)。
司洪濤、呂冠霖、黃香玫,「氧化技術在高濃度COD廢水處理之應用」,財團法人臺灣產業服務基金會,臺灣(2003)。
行政院農業委員會,網址: http://www.coa.gov.tw/show_index.php?screen_size=2,臺灣(2008)。
行政院農業委員會動植物防疫檢疫局-農藥資訊服務網站,
網址:http://pesticide.baphiq.gov.tw ,臺灣(2009) 。
李國欽,「農藥之特性及安全有效之使用」,行政院農委會農業藥物毒物試驗所技術專刊58號,臺灣(2000)。
呂宗昕,「圖解奈米科技與光觸媒」,商周文化事業公司,第164-211頁,臺灣(2003)。
楊振昌,「中毒緊急救治要則」,財團法人毒藥物防治發展基金會,臺灣(2002)。
吳承穎,「二氧化鈦光觸媒氧化降解酚化合物之動力學」,碩士論文,元智大學,臺灣(2006)。
林萬福、陳榮輝、楊慶成,「TiO2催化劑對3-氯酚進行光催化反應之反應裝置改良與動力學研究」,工業污染防治第73 期,第43-59頁,臺灣(1999)。
香港綠色和平網站,網址http://www.greenpeace.org/china/ch/,臺灣(2009)。
郭昭延,奈米科學網,網址http://nano.nchc.org.tw ,臺灣(2009)。
財團法人臺灣養殖漁業發展基金會 http://www.aquadf.org.tw/ 養殖漁業資訊報,臺灣(2009)。
徐仁宏、徐銘鍇,「長弧氙燈之特性與應用簡介」,工業材料雜誌 7月號/第271期,第146-151頁,臺灣(2009)。
徐慧宜,「混和型光觸媒降解水中4-硝基酚之研究」,碩士論文,雲林科技大學,臺灣(2005)。
陳國誠,「廢水生物處理學」,國立編譯館,臺灣(1991)。
楊小平,「守衛綠色 農藥與人類的生存」,曉園出版社,臺灣(2001)。
黃文靜,「混和溶劑萃取與生物膜技術自高鹽或強酸溶液中降解酚」,碩士論文,元智大學,臺灣(2007)。
張一賓、孫晶,「國內外有機磷農藥的概況及對我國有機磷農藥發展的看法」 (J)農藥.38(7),第1-3頁,中國大陸(1999)。
張曼平、戰閏、夏宗鳳,「滅多威的光催化降解動力學研究」[J].高等學校化學學報,19(9):第1475-1478頁,中國大陸(2001)。
張智凱,「以不同晶相之二氧化鈦光觸媒催化分解酚」,碩士論文,元智大學,臺灣(2008)。
費雯綺,「認識農藥」,農藥安全使用研習班訓練教材,行政院農委會農業藥物毒物試驗所,臺灣(2000)。
莊連春,「紫外光/過氧化氫程序分解水中毒性污染物之研究」,博士論文,中央大學 ,臺灣(1996)。
農藥一路發網,網址:http:\\www.ag168.com,臺灣(2009)。
趙楚月,「有機磷農藥光催化氧化分解的可行性研究」[J].化工環保,
30(6),第74-79頁,中國大陸(1993)。
廖明竹,「芬頓氧化程序應用於降解納乃得及巴拉松之研究」,碩士論文,明志科技大學,臺灣(2008)。
環保署環境品質監測資料庫,
http:\\alphap.epa.gov.tw/cgi-bin/get-river-site?1730,臺灣(1999)
臺灣省政府環境保護處,「環境保護處訓練班講義」,臺灣省政府環境保護處,第13-14頁,臺灣(1998)。
簡國明、洪長春、吳典熹、王永銘、藍怡平,「奈米二氧化鈦專利地圖及分析」,第18-24頁(2003)。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top