跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/12 20:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃國瑞
研究生(外文):Kuo-Jui Huang
論文名稱:PBI膜電極組磷酸含量對燃料電池的性能影響
論文名稱(外文):The Effect of the Phosphoric Acid Content in Membrane Electrode Assembly on PBI-based Proton Exchange Membrane Fuel Cells
指導教授:林秀麗林秀麗引用關係
指導教授(外文):Hsiu-Li Lin
口試委員:余子隆卓錫樑
口試委員(外文):Tzyy-Lung YuHsi-Liang Cho
口試日期:2013-07-13
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:75
中文關鍵詞:聚苯並咪唑膜電極組含酸率高溫質子交換膜燃料電池
外文關鍵詞:PBIMembrane electrode assemblyPhosphoric acidPEMFC
相關次數:
  • 被引用被引用:1
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用自行合成的PBI膜材,以直接浸漬在70℃、85 wt%磷酸溶液中,測量其不同時間下膜材含酸率與導電度;在電極部分使用含有[PBI] / [Pt-C+PBI]=5 wt%,Pt /C loading 0.5 mg cm-2 的電極膜材,分別浸漬於不同的磷酸溶液溫度、濃度條件下,且於不同時間取出量測其含酸率;依據含酸率實驗結果選擇PBI膜材含酸率在215、306、395 µmol of H3PO4 cm-2下,分別與電極含酸率在10、40、155 µmol of H3PO4 cm-2下組合成MEA,在160℃進行H2 / O2單電池效能測試。
由PBI膜材含酸率實驗:膜材含酸率與導電度皆隨浸漬時間增加而增加,當浸漬時間達48hr時含酸率增加平緩;在電極含酸率實驗:電極含酸率亦與浸漬時間增加而增加,浸漬時間達48hr時含酸率增加平緩,其含酸率與浸漬的磷酸溫度無顯著關係。
單電池測試結果:當PBI膜材含酸率高時,雖然導電度佳且具有較高的初始電池效能,但經48hr活化後其磷酸會往陰極方向移動造成陰極阻抗增加,使活化後的電池效能不佳。當電極含酸率過高時,電極阻抗過高,單電池的效能亦不佳;當膜材含酸率皆過低時,會造成氣體從膜材中滲透,亦會使電池效能不佳,此次實驗以PBI 膜材含酸率 306 µmol of H3PO4 cm-2,電極含酸率在 40 µmol of H3PO4 cm-2所製成MEA,具有最佳的單電池效能。
The influence of the amount of phosphoric acid (H3PO4) in the polybenzimidazole (PBI) membrane and electrodes on cell performance was studied. It was found that the amount of H3PO4 doped in the membranes and electrode can be controlled by changing the immersion time and concentration in H3PO4 solution. Then Membrane electrode assemblies (MEAs) were prepared by PBI membranes and electrodes with various amounts of H3PO4. The acid uptake in PBI membranes were 215, 306, 395 µmol cm-2, respectively. The acid uptake in electrode were 10, 40, 155 µmol cm-2, respectively. Finally, HT-PEMFC performances of MEAs were measured at 160 ℃ in H2/O2.
First of all, we noticed that the acid uptake of membranes and electrodes increased with time and reach maximum value about 48hrs. The conductivity of PBI membranes raised with increasing acid uptake. Furthermore, HT-PEMFC performances of MEAs with high acid uptake in membrane had excellent performance at the beginning, then it decay very fast as time goes by. HT-PEMFC performances of MEAs with low acid uptake in membrane, caused gas to permeate through membrane, had low cell performance also. The MEA, membrane with acid uptake of 306µmol cm-2 and electrode with acid uptake of 40µmol cm-2, has the best performance of fuel cell.
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 序論 1
1.1 前言 1
1.2 燃料電池的分類 2
1.3 質子交換膜燃料電池原理與構造 5
1.4 質子交換膜簡介 6
1.4.1 Nafion 7
1.4.2 聚苯並咪唑(PBI) 9
1.5 高溫質子燃料電池的優勢 11
1.6 PBI膜電極組製作 12
1.7 研究目的 15
第二章 實驗 16
2.1 實驗架構 16
2.2 實驗試藥 17
2.3 實驗儀器設備 18
2.4 PBI薄膜製備及含酸率、導電度測試 19
2.4.1 PBI薄膜製備及厚度測試 19
2.4.2 PBI膜含酸率與導電度測試 21
2.5 觸媒電極製備與電極含酸率測試 23
2.5.1 觸媒電極含酸率量測 23
2.5.2 觸媒電極製備 25
2.6 MEA含酸率組合 26
2.7 質子交換膜燃料電池(PEMFC)單電池測試 27
2.7.1 單電池組裝 28
2.7.2 單電池性能測試 30
2.7.3 交流阻抗法 (AC impedance) 31
第三章 結果與討論 39
3.1 PBI 膜含酸率測試 39
3.1.1 PBI膜浸漬磷酸前 39
3.1. 2 PBI膜浸漬磷酸後 40
3.2 電極含酸率測試 43
3.2.1 電極浸漬磷酸前 43
3.2.2 電極浸漬磷酸後 44
3.3 不同MEA含酸率組合單電池測試 48
3.3.1 不同MEA含酸率組合之i-V 測試 49
3.3.2 不同MEA含酸率組合之Impedance 58
3.3.3 不同MEA含酸率組合之生成水pH值 67
3.3.4 不同MEA含酸率組合之SEM/EDS分析 68
第四章 結論 72
第五章 參考文獻 73
1. 黃朝榮,衣寶廉,燃料電池-原理與應用, 五南書局,2005。
2. Rikukawa, M. and Sanui, K., Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Progress in Polymer Science, 25(10): p. 1463-1502. 2000.
3. 張良中,林月微,徐雅亭,「質子交換膜技術」,工業材料雜誌, 259期: p. 110-115,2008。
4. Wainright J.S., Wang J. T., Savinell R. F., and Litt M. H., "Acid-doped polybenzimidazoles: A new polymer electrolyte", J. Electrochem. Soc., 142(7): L121-L123. 1995.
5. Wang J. T., Savinell R. F., Wainright J., Litt M. H., and Yu H., "A H2/O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte", Electrochemica Acta, 41(1):p. 193-197. 1996-a.
6. Wang J. T., Wainright J. S., Savinell R. F., and Litt M. H., "A direct methanol full cell using acid-doped polybenzimidazole as polymer electrolyte", Journal of Applied Electrochemistry, 26(7) :p.751-756. 1996-b.
7. Ma, Y.L., Wainright, J.S., Litt, M.H., and Savinell, R.F., "Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells". Journal of the Electrochemical Society, 151(1): p. A8-A16. 2004.
8. Zhu, S.H., Yan, L.M., Zhang, D.F., and Feng, Q.X., "Molecular dynamics simulation of microscopic structure and hydrogen bond network of the pristine and phosphoric acid doped polybenzimidazole". Polymer, 52(3): p. 881-892. 2011.
9. Bond G.C., Heterogeneous Catalysis - Principle and Applications Clarendon Press. 1974
10. Kim, H.J., An, S.J., Kim, J.Y., Moon, J.K., Cho, S.Y., Eun, Y.C., Yoon, H.K., Park, Y., Kweon, H.J., and Shin, E.M., "Polybenzimidazoles for high temperature fuel cell applications. Macromolecular Rapid Communications", 25(15): p. 1410-1413.2004.
11. Lobato, J., Rodrigo, M.A., Linares, J.J., and Scott, K., "Effect of the catalytic ink preparation method on the performance of high temperature polymer electrolyte membrane fuel cells". Journal of Power Sources, 157(1): p. 284-292. 2006.
12. Lin, H.L., Yu, T.L., Chang, W.K., Cheng, C.P., Hu, C.R., and Jung, G.B.," Preparation of a low proton resistance PBI/PTFE composite membrane". Journal of Power Sources, 164(2): p. 481-487. 2007.
13. Lin, H.L., Hsieh, Y.S., Chiu, C.W., Yu, T.L., and Chen, L.C., “Durability and stability test of proton exchange membrane fuel cells prepared from polybenzimidazole/poly(tetrafluoro ethylene) composite membrane”. Journal of Power Sources, 193(1): p. 170-174. 2009.
14. Li, M.Q. and Scott, K., “A polymer electrolyte membrane for high temperature fuel cells to fit vehicle applications”. Electrochimica Acta, 55(6): p. 2123-2128. 2010.
15. Lobato, J., Rodrigo, M.A., Linares, J.J., and Scott, K., “Effect of the catalytic ink preparation method on the performance of high temperature polymer electrolyte membrane fuel cells”. Journal of Power Sources, 157(1): p. 284-292. 2006.
16. Kwon, Y., Kim, T.Y., Yoo, D.Y., Hong, S.G., and Park, J.O., “Maximization of high-temperature proton exchange membrane fuel cell performance with the optimum distribution of phosphoric acid”. Journal of Power Sources, 188(2): p. 463-467.2009.
17. Wannek, C., Konradi, I., Mergel, J., and Lehnert, W., “Redistribution of phosphoric acid in membrane electrode assemblies for high-temperature polymer electrolyte fuel cells.” International Journal of Hydrogen Energy, 34(23): p. 9479-9485.2009.
18. 田昭武,電化學研究方法,科學出版社,北京1984。
19. MacDonald J.R., Impedance Spectrosocopy emphasizing solid materials and systems. NEW YORK, 1987.
20. 林宗儀,「矽氧烷型高分子電解質之製備與物性探討」,成功大學, 博士論成功大學,2000。
21. 許照, 基本電學,徐氏基金會, 臺北,1988。
22. Asensio J. A., Borrós S., and Pedro G. R.,” Proton-conducting polymers based on benzimidazoles and sulfonated benzimidezoles” , J. Polymer Sci.: Part A: Polymer Chemistry, 40,p. 3703-3710 .2002.
23. 陳彥廷,「PBI/PTFE複合膜製備與燃料電池應用」,元智大學,碩士論文, 2012 。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊