跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/04 16:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴孝武
研究生(外文):Shiau-Wu Lai
論文名稱:硼烷氨化合物之釋氫研究
論文名稱(外文):A study of hydrogen generation from ammonia borane
指導教授:余子隆
指導教授(外文):Tzyy-Lung Yu
口試委員:林秀麗翁炳志陳暉楊禎明董崇民
口試委員(外文):Hsiu-Li LinBin-Jih WengHui ChenJen-Ming YangTrong-Ming Don
口試日期:2013-01-07
學位類別:博士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:103
中文關鍵詞:硼烷氨化合物熱裂解釋氫水解釋氫化學氫化物中孔洞材料
外文關鍵詞:ammonia boranethermolysis of ABhydrolysis of ABhydrogen generationmesoporous silica materialsSBA-15MCM-41
相關次數:
  • 被引用被引用:0
  • 點閱點閱:568
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
硼烷氨化合物 (NH3BH3, ammonia borane, AB) 為一高含氫化合物,由其化學結構式可知H原子佔整體重量的19.6 wt.%,在常溫常壓下為一安定之白色固體粉末,可藉由 (A) 直接加熱裂解 (>500oC) 或是 (B) 加入觸媒催化再進行熱裂解使其釋氫。在Part-A部分,我們首先合成SBA-15、MCM-41中孔洞材料並進行分析鑑定,接著將AB:中孔洞材料以重量比例1:1進行摻合形成AB/SBA-15、AB/MCM-41複合物,再利用TGA、DSC與ASAP進行進行熱性質分析與鑑定,由實驗結果可知AB與SBA-15、MCM-41摻合後,有較低的釋氫溫度,同時降低borazine和diborane副產物的生成,但提高了NH3的釋出。
在Part-B中,我們合成Fe-Ni等莫耳比 [Fe:Ni = 1:1] 的合金奈米粒子,並以不同重量摻合比例將 Fe-Ni 合金奈米粒子擔載於中孔洞材料SBA-15載體上,形成Fe-Ni/SBAs觸媒。接著我們在常溫常壓下對AB水溶液進行觸媒催化釋氫研究,探討不同重量摻合比例的觸媒和反應溫度 (30、40、50 和 60 oC) 等變因對釋氫反應速率及活化能 (Ea) 的影響。根據實驗結果可知:在30 oC、0.2 wt% AB水溶液下,以不同重量摻合比例的Fe-Ni/SBAs觸媒催化釋氫,其釋氫反應速率呈現先升後降的趨勢,其中以Fe-Ni-5/SBA觸媒之釋氫速率最大,根據 Arrhenius equation 計算後,可知其Ea約為75 kJ mol-1,優於其他不同重量摻合比例的Fe-Ni/SBAs觸媒。
In this study, part A, we report the thermal decomposition behavior of neat ammonia borane (AB) and AB embedded in SBA-15 and MCM-41 silica scaffolds. We show that embedding AB in SBA-15 and MCM-41 results in a lower hydrogen release temperature, decreases in the borazine and diborane release quantities, and an increase in the ammonia release quantity while the compounds are heated from room temperature to 250oC. These phenomena are attributed to the followings: (1) the Lewis base property of the “–O-” groups of the silica scaffolds, leading to the formation of silica-O﹕→ BH3–NH3 coordination bonding and the loosening of the H3B←:NH3 coordination bonding; and (2) the reduction of AB intermolecular hydrogen bonding when AB molecules are confined and form small nanoparticles in the mesoporous of the scaffolds, which have lower AB intermolecular interactions than in the large neat AB particles.

We also prepared an unsupported iron-nickel (Fe-Ni) alloy and several Fe-Ni alloy deposited on SBA-15 (Santa Barbara Amorphous-15) supports (Fe-Ni/SBA) with various Fe-Ni contents for the catalysis of the AB hydrolysis for hydrogen generation. By maintaining a constant concentration of Fe-Ni in the AB aqueous solutions, we investigate the influence of the SBA-15 support on the Fe-Ni catalytic activity in the AB hydrolysis reaction. The SBA-15 support helps disperse the Fe-Ni alloy particles on its surface, which consequently improves the catalytic activity of the Fe-Ni. However, the presence of SBA-15 particles in the aqueous solution also retards the migration of the AB molecules in solution toward the Fe-Ni catalysts, increasing the induction time of the AB hydrolysis reaction. Therefore, there is an optimal Fe-Ni content in Fe-Ni/SBA for the catalysis of the AB hydrolysis reaction.
TABLE of CONTENT
TABLE OF CONTENT IV
LIST OF FIGURE V
I INTRODUCTION 1
II LITERATURE REVIEW 4
III EXPERIMENTAL 10
3.1 EXPERIMENTAL DESIGN 10
3.2 MATERIALS AND SAMPLE PREPARATIONS 11
3.2.1 Materials 11
3.2.2 Sample preparations 13
3.2.2.1 Preparations of MCM-41 and SBA-15 13
3.2.2.2 Preparations of AB/MCM-41 and AB/SBA-15 14
3.2.2.3 Synthesis of Fe-Ni/SBA-15 Catalysts and unsupported Fe-Ni alloy 14
IV RESULT AND DISCUSSIONS 19
PART A. HYDROGEN GENERATION FROM AB BY THERMOLYSIS 19
4.1 PROPERTIES OF SBA-15, MCM-41, AB/SBA-15, AND AB/MCM-41 19
4.1.1 Morphology and microstructure of SBA-15 and MCM-41 19
4.1.2 FTIR studies of AB, SBA-15, MCM-41, AB/SBA-15, and AB/MCM-41 23
4.1.3 N2 adsorption/ desorption isotherms of SBA-15, AB/SBA-15, MCM-41, and AB/MCM-41 25
4.2 HYDROGEN RELEASE STUDIES OF NEAT AB, AB/SBA-15, AND AB/MCM-41 SAMPLES 29
4.2.1 DSC analyses of neat AB, AB/SBA-15, and AB/MCM-41 29
4.2.2 TGA analyses of neat AB, AB/SBA-15, and AB/MCM-41 33
4.2.3 TPD-MS analysis of AB-SBA-15 and AB/MCM-41 37
4.3 CHEMICAL MECHANISM 42
PART B. HYDROGEN GENERATION FROM AB BY HYDROLYSIS 49
4.4 CHARACTERIZATION OF THE SBA-15 SUPPORT, FE-NI/SBA SAMPLES AND UNSUPPORTED FE-NI ALLOY 49
4.4.1 XRD studies of the SBA-15 support, Fe-Ni/SBA samples and unsupported Fe-Ni alloy. 50
4.4.2 HR-TEM observations of the SBA-15 support, Fe-Ni/SBA samples and unsupported Fe-Ni alloy 53
4.5 CATALYSIS OF THE HYDROLYSIS OF AB BY THE SBA-15 SUPPORT, FE-NI/SBA CATALYSTS AND UNSUPPORTED FE-NI ALLOY UNDER UNSTIRRED CONDITION 57
4.5.1 Hydrogen generation from hydrolysis of AB using the SBA-15 support, Fe-Ni/SBA catalysts and unsupported Fe-Ni alloy 57
4.5.2 Influence of temperature on the Fe-Ni/SBA catalysts and unsupported Fe-Ni alloy for the hydrolysis of AB 65
4.5.3 Influence of AB concentrations on the Fe-Ni/SBA catalysts and unsupported Fe-Ni alloy for the hydrolysis of AB 70
V CONCLUSIONS 77
VI REFERENCES 80
[1] Ahluwalia RK, Hua TQ, Peng JK. On-board and Off-board performance of hydrogen storage options for light-duty vehicles. Int J Hydrogen Energy 2012;37:2891-910.
[2] Wolf G, Baumann J, Baitalow F, Hoffmann FP. Calorimetric process monitoring of thermal decomposition of B-N-H compounds. Thermochim Acta 2000;343:19-25.
[3] Baitalow F, Baumann J, Wolf G, Jaenicke-Rossler K, Leitner G. Thermal decomposition of B-N-H compounds investigated by using combined thermoanalytical methods. Thermochim Acta 2002;391:159-68.
[4] Helary J, Salandre N, Saillard J, Poullain D, Beaucamp A, Autissier D. A physico-chemical study of an NH3BH3-based reactive composition for hydrogen generation, Int J Hydrogen Energy 2009;34:169-73.
[5] Palumbo O, Paolone A, Rispoli P, Cantelli R, Autrey T. Decomposition of NH3BH3 at sub-ambient pressures: A combined thermogravimetry-differential thermal analysis-mass spectrometry study. J Power Sources 2010;195:1615-8.
[6] Shore SG, Parry RW. The crystalline compound ammonia-borane H3NBH3. J Am Chem Soc 1955;77:6084.
[7] Shore SG, Parry RW. Chemical evidence for the structure of the diammoniate of diborane. II. The preparation of ammonia-borane. J Am Chem Soc 1958;80:8.
[8] Klooster WT, Koetzle TF, Siegbahn PEM, Richardson TB, Crabtree RH. Study of the N-H center dot center dot center dot H-B dihydrogen bond including the crystal structure of BH3NH3 by neutron diffraction. J Am Chem Soc 1999;121:6337-43.
[9] Li L, Yao X, Sun C, Du A, Cheng L, Zhu Z, Yu C, Zou J, Smith SC, Wang P, Cheng HM, Frost RL, Lu GQ. Lithium-Catalyzed Dehydrogenation of Ammonia Borane within Mesoporous Carbon Framework for Chemical Hydrogen Storage. Advanced Functional Materials 2009;19:271.
[10] Gutowska A, Li LY, Shin YS, Wang CMM, Li XHS, Linehan JC, Smith RS, Kay BD, Schmid B, Shaw W, Gutowski M, Autrey T. Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angew Chem Int Edit 2005;44:3578-82.
[11] Feaver A, Sepehri S, Shamberger P, Stowe A, Autrey T, Cao GZ. Coherent carbon cryogel-ammonia borane nanocomposites for H2 storage. J Phys Chem B 2007;111:7469-72.
[12] Sepehri S, Garcia BB, Cao GZ. Tuning dehydrogenation temperature of carbon-ammonia borane nanocomposites. J Mater Chem 2008;18:4034-7.
[13] Li ZY, Zhu GS, Lu GQ, Qiu SL, Yao XD. Ammonia Borane Confined by a Metal-Organic Framework for Chemical Hydrogen Storage: Enhancing Kinetics and Eliminating Ammonia. J Am Chem Soc 2010;132:1490-1.
[14] Paolone A, Palumbo O, Rispoli P, Cantelli R, Autrey T, Karkamkar A. Absence of the Structural Phase Transition in Ammonia Borane Dispersed in Mesoporous Silica: Evidence of Novel Thermodynamic Properties. J Phys Chem C 2009;113:10319-21.
[15] Wang LQ, Karkamkar A, Autrey T, Exarhos GJ. Hyperpolarized Xe129 NMR Investigation of Ammonia Borane in Mesoporous Silica. J Phys Chem C 2009;113:6485-90.
[16] Kim H, Karkamkar A, Autrey T, Chupas P, Proffen T. Determination of Structure and Phase Transition of Light Element Nanocomposites in Mesoporous Silica: Case study of NH3BH3 MCM-41. J Am Chem Soc 2009;131:13749-55.
[17] Eom K, Kim M, Kim R, Nam D, Kwon H. Characterization of hydrogen generation for fuel cells via borane hydrolysis using an electroless-deposited Co–P/Ni foam catalyst. J Power Sources 2010;195:2830-4.
[18] Ramachandran PV, Gagare PD, Preparation of ammonia borane in high yield and purity, methanolysis, and regeneration. Inorg Chem 2007;46:7810-7.
[19] Xu Q, Chandra M. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia-borane at room temperature. J Power Sources 2006;163:364-70.
[20] Chandra M, Xu Q. Room temperature hydrogenation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts. J Power Sources 2007;168:135-42.
[21] Chandra M, Xu Q. Dissociation and hydrolysis of ammonia-borane with solid acids and carbon dioxide: An efficient hydrogen generation system. J Power Sources 2006;159:855-60.
[22] Mohajeri N, T-Raissi A, Adebiyi O. Hydrolytic cleavage of ammonia-borane complex for hydrogen production. J Power Sources 2007;167:482-485.
[23] Cheng F, Ma H, Li Y, Chen J. Ni1-xPtx (x=0-0.12) hollow spheres as catalysts for hydrogen generation from ammonia-borane. Inorg Chem 2007;46: 788-94.
[24] Basu S, Brockman A, Gagore P, Zheng Y, Ramachandran PV, Delgass WN. Chemical kinetics of Ru-catalyzed ammonia-borane hydrolysis. J Power Sources 2009;188:238-43.
[25] Clark TJ, Whittell GR, Manners I. Highly efficient colloidal cobalt- and rhodium-catalyzed hydrolysis of H3NBH3 in air. Inorg Chem 2007;46:7522-7.
[26] Kalidindi SB, Sanyal U, Jagirdar BR. Nanostructured Cu and Cu@Cu2O core shell catalysts for hydrogen generation from ammonia-borane. Phys Chem Chem Phys 2008;10:5870-4.
[27] Umegaki T, Yan JM, Zhang XB, Shioyama H, Kuriyama N, Xu Q. Hollow Ni-SiO2 nanosphere-catalyzed hydrolytic dehydrogenation of ammonia-borane for chemical hydrogen storage. J Power Sources 2009;191:209-16.
[28] Yao CF, Zhuang L, Cao YL, Hi XP, Yang HX. Hydrogen release from hydrolysis of borazane on Pt- and Ni-based alloy catalysts. Int J Hydrogen Energy 2008;33:2462-7.
[29] Yan JM, Zhang XB, Han S, Shioyama H, Xu Q. Iron-nanoparticle-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Angew Chem Int Ed 2008;47:2287-9.
[30] Umegaki T, Yan JM, Zhang XB, Shioyama H, Kuriyama N, Xu Q. Preparation and catalysis of poly(N-vinyl-2-pyrrolidone) (PVP) stabilized nickel catalyst for hydrolytic dehydrogenation of ammonia-borane. Int J Hydrogen Energy 2009;34:3816-22.
[31] Metin Ö, Özkar S. Hydrogen generation from the hydrolysis of ammonia-borane and sodium borohydride using water soluble polymer-stabilized cobalt(0) nanoclusters catalyst. Energy Fuels 2009;23:3517-26.
[32] Metin Ö, Sahin S, Özkar S. Water-soluble poly(4-styrenesulfonic acid-co-maleic acid) stabilized ruthenium(0) and palladium(0) nanoclusters as highly active catalysts in hydrogen generation from the hydrolysis of ammonia-borane. Int J Hydrogen Energy 2009;34:6304-13.
[33] Yan JM, Zhang XB, Han S, Shioyama H, Xu Q. Magnetically recyclable Fe–Ni alloy catalyzed dehydrogenation of ammonia borane in aqueous solution under ambient atmosphere. J Power Sources 2009;194:478-81.
[34] Yan JM, Zhang XB, Shioyama H, Xu Q. Room temperature hydrolytic dehydrogenation of ammonia-borane catalyzed by Co nanoparticles. J Power Sources 2010;195:1091-4.
[35] Yan JM, Zhang XB, Han S, Shioyama H, Xu Q. Synthesis of longtime water/air-stable Ni nanoparticles and their high catalytic activity for hydrolysis of ammonia-borane for hydrogen generation. Inorg Chem 2009;48:7389-93.
[36] Yang XJ, Cheng F, Liang J, Tao Z, Chen J. PtxNi1-x nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia-borane. Int J Hydrogen Energy 2009;34:8785-91.
[37] Zahmakıran M, Durap F, Özkar S. Zeolite confined copper(0) nanoclusters as cost-effective and reusable catalyst in hydrogen generation from the hydrolysis of ammonia-borane. Int J Hydrogen Energy 2010;35:187-97.
[38] Rakap M, Özkar S. Zeolite confined palladium(0) nanoclusters as effective and reusable catalyst for hydrogen generation from the hydrolysis of ammonia-borane. Int J Hydrogen Energy 2010;35:1305-12.
[39] Rakap M, Özkar S. Hydrogen generation from the hydrolysis of ammonia-borane using intrazeolite cobalt(0) nanoclusters catalyst. Int J Hydrogen Energy 2010;35:3341-6.
[40] Satyapal S, Read C, Ordaz G, Thomas G. 2006 Annual DOE hydrogen program Merit Review: hydrogen storage. Washington, D.C.: U.S. Department of Energy, http://www. hydrogen.energy.gov/pdfs/review06/2_storage_satyapal.pdf; 2006.
[41] Tong DG, Zeng XL, Chu W, Wang D, Wu P. Magnetically recyclable hollow Co-B nanospindles as catalyst for hydrogen generation from ammonia-borane. J Mater Sci Lett 2010;45:2862-7.
[42] Patel N, Fernandes R, Guella G, Miotello A. Nanoparticle assembled Co-B thin film for the hydrolysis of ammonia-borane: a highly active catalyst for hydrogen production. Appl Catal B 2010;95:137-43.
[43] Rakap M, Kalu EE, Özkar S. Hydrogen generation from the hydrolysis of ammonia-borane using cobalt-nickel-phosphorus (Co-Ni-P) catalyst supported on TiO2 by electroless deposition. Int J Hydrogen Energy 2011;36:254-61.
[44] Jiang HL, Umegaki T, Akita T, Zhang XB, Haruta M, Xu Q. Bimetallic Au-Ni nanoparticles embedded in SiO2 nanospheres: synergetic catalysis in hydrolytic dehydrogenation of ammonia-borane. J Chem Eur 2010;16:3132-7.
[45] Xu Q, Chandra M. A portable hydrogen generating systems: Catalytic hydrolysis of ammonium-borane. J Alloys Compd 2007;446-447:729-32.
[46] Dinc M, Metin Ö, Özkar S. Water soluble polymer stabilized iron(0) nanoclusters: A cost-effective and magnetically recoverable catalyst in hydrogen generation from the hydrolysis of sodium borohydride and ammonia borane. Catal Today 2012;183:10-16.
[47] Ferrando R, Jellinek J, Johnston R. Nanpalloys: from theory to applications of alloy clusters and nanoparticles. Chemical Reviews 2008;108:845-910.
[48] Pei Y, Zhou G, Luan N, Zong B, Qiao M, Tao MF. Synthesis and catalysis of chemically reduced metal-metalloid amorphous alloys. Critical Review 2012;41:8140-62.
[49] Albarazi A, Beaunier P, Costa PD. Hydrogen and syngas production by methane dry reforming on SBA-15 supported nickel catalysts: on the effect promotion by Ce0.75Zr0.25O2 mixed oxide. Int. J. Hydrogen Energy (2012), http://dx.doi.org/ 10.1016/j.ijhydene.2012.10.063
[50] Rakap M, Kalu EE, Özkar S. Polymer-immobilized palladium supported on TiO(2) (Pd-PVB-TiO(2)) as highly active and reusable catalyst for hydrogen generation from the hydrolysis of unstirred ammonia-borane solution. Int J Hydrogen Energy 2011;36:1448-55.
[51] Rakap M, Kalu EE, Ozkar S. Hydrogen generation from hydrolysis of ammonia-borane using Pd–PVB–TiO2 and Co–Ni–P/Pd–TiO2 under stirred conditions. J. Power Sources 2012;210:184–190.
[52] Xia YD, Mokaya R. A study of the behaviour of mesoporous silicas in OH/CTABr/H2O systems: phase dependent stabilisation, dissolution or semipseudomorphic transformation. J Mater Chem 2003;13:3112-21.
[53] Beck JS, VartUli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenkert JL. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 1992;114:10834-43.
[54] Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998;279:548-2.
[55] Chen XY, Huang LM, Li QZ. Hydrothermal transformation and characterization of porous silica templated by surfactants. J Phys Chem B 1997;101:8460-7.
[56] Brunauer S, Emmett PH, Teller E. Adsorption of Gases in Multimolecular Layers. J Am Chem Soc 1938;60:309-19.
[57] Barrett EP, Joyner LG, Halenda PP. The Determination of Pore Volume and Area Distributions in Porous Substances Computations from nitrogen isotherms. J Am Chem Soc 1951;73:373-80.
[58] He T, Xiong ZT, Wu GT, Chu HL, Wu CZ, Zhang T, Chen P. Nanosized Co- and Ni-Catalyzed Ammonia Borane for Hydrogen Storage. Chem Mater 2009;21:2315-18.
[59] Morey MS, O'Brien S, Schwarz S, Stucky GD. Hydrothermal and postsynthesis surface modification of cubic, MCM-48, and ultralarge pore SBA-15 mesoporous silica with titanium. Chem Mater 2000;12:898-911.
[60] Jentys A, Pham NH, Vinek H. Nature of hydroxy groups in MCM-41. J Chem Soc Faraday Transactions 1996;92:3287.
[61] Anunziata OA, Martinez ML, Beltramone AR. Hydroxyapatite/MCM-41 and SBA-15 Nano-Composites: Preparation, Characterization and Applications. Materials 2009;2:1508-19.
[62] Kragten DD, Fedeyko JM, Sawant KR, Rimer JD, Vlachos DG, Lobo RF, Tsapatsis M. Structure of the silica phase extracted from silica/(TPA)OH solutions containing nanoparticles. J Phys Chem B 2003;107:10006-16.
[63] Smith J, Seshadri KS, White D. Infrared spectra of matrix isolated BH3NH3, BD3ND3, and BH3ND3. J Molecular Spectroscopy 1973;45:327-37.
[64] Komm R, Geanangel RA, Liepins R. Synthesis and studies of poly(aminoborane), (H2NBH2)x. Inorg Chem 1983;22:1684-86.
[65] Kim DP, Moon KT, Kho JG, Economy J, Gervais C, Babonneau F. Synthesis and characterization of poly-(aminoborane) as a new boron nitride precursor. Polym Advan Technol 1999;10:702-12.
[66] Stuart BH, Organic Molecules. in Infrared Spectroscopy: Fundamentals and Applications. UK: John Wiley & Sons, Ltd, Chichester,; 2005.
[67] Hwang HT, Al-Kukhun A, Varma A. High and rapid hydrogen release from thermolysis of ammonia borane near PEM fuel cell operating temperatures: Effect of quartz wool. Int J Hydrogen Energy 2012;37:6764-70.
[68] Baumann J, Baitalow E, Wolf G. Thermal decomposition of polymeric aminoborane (H2BNH2)(x) under hydrogen release. Thermochim Acta 2005;430:9-14.
[69] Demirci UB, Bernard S, Chiriac R, Toche F, Miele P. Hydrogen release by thermolysis of ammonia borane NH3BH3 and then hydrolysis of its by-product [BNHx]. J Power Sources 2011;196:279-86.
[70] Li SF, Tang ZW, Tan YB, Yu XB. Polyacrylamide Blending with Ammonia Borane: A Polymer Supported Hydrogen Storage Composite. J Phys Chem C 2012;116:1544-9.
[71] Frueh S, Kellett R, Mallery C, Molter T, Willis WS, King'ondu C, Suib SL. Pyrolytic Decomposition of Ammonia Borane to Boron Nitride. Inorg Chem 2011;50:783-92.
[72] Richardson TB, Gala SD, Crabtree RH, Siegbahn PEM. Unconventional hydrogen bonds: Intermolecular B-H…H-N interactions. J Am Chem Soc 1995;117:12875-6.
[73] Morrison CA, Siddick MM. Dihydrogen bonds in solid BH3NH3. Angew Chem Int Edit 2004;43:4780-2.
[74] Tang ZW, Li SF, Yang ZX, Yu XB. Ammonia borane nanofibers supported by poly(vinyl pyrrolidone) for dehydrogenation. J Mater Chem 2011;21:14616-21.
[75] Imperor-Clerc M, Davidson P, Davidson A. Existence of a microporous corona around the mesopores of silica-based SBA-15 materials templated by triblock copolymers. J Am Chem Soc 2000;122:11925-33.
[76] Kim JM, Sakamoto Y, Hwang YK, Kwon YU, Terasaki O, Park SE, Stucky GD. Structural design of mesoporous silica by micelle-packing control using blends of amphiphilic block copolymers. J Phys Chem B 2002;106: 2552-8.
[77] Umegaki T, Yan JM, Zhang XB, Shioyama H, Kuriyama N, Xu Q. Co–SiO2 nanosphere-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. J Power Sources 2010;195:8209–14.
[78] X-ray powder diffraction file JCPDS-ICDD (Joint committee on powder diffraction standard- international centre for diffraction data, Swarthmore, PA, 1999) file no. 06-0696 (Fe) and 04-0850 (Ni).
[79] Singh SK, Singh AK, Aranishi K, Xu Q. Noble metal free bimetallic nanoparticle catalyzed selective hydrogen generation from hydrous hydrazine for chemical hdrogen storage. J Am Chem Soc 2011;133:19638-41.
[80] Jiang HL, Xu Q. Catalytic hydrolysis of ammonia borane for chemical hydrogen storage. Catalysis Today 2011;170:56-63.
[81] Bluhm ME, Bradley MG, Butterick R, Kusari U, Sneddon LG. Amineborane -based chemical hydrogen storage: Enhanced ammonia borane dehydrogenation in ionic liquids. J Am Chem Soc 2006;128:7748–9.
[82] Keaton RJ, Blacquiere JM, Baker RT. Base metal catalyzed dehydrogenation of ammonia-borane for chemical hydrogen storage. J Am Chem Soc 2007;129:1844–5.
[83] Zahmakiran M, Özkar S. Zeolite framework stabilized rhodium(0) nanoclusters catalyst for the hydrolysis of ammonia-borane in air: Outstanding catalytic activity, reusability and lifetime. Appl Catal B Environ 2009;89:104-10.
[84] Eom K, Cho K, Kwon H. Hydrogen generation from hydrolysis of NH3BH3 by an electroplated Co-P catalyst. Int J Hydrogen Energ 2010;35:181-6.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王運昌、葉壽山、高森永(2000)。國軍官兵醫療服務利用與就醫經驗之探討。國防醫學31(5),468-478。
2. 林姿利、郭憲文(1992)。影響老人接受健康檢查服務因素之研究-以臺中市老人免費健康檢查服務為例。公共衛生,19,94-112。
3. 林振賢(1996)。過勞死問題之初探。臺中商專學報,28,1-25。
4. 林豐裕、胡月娟(2003)。Health Behaviors and Related Factors in People with ChronicIllness。醫護科技學刊,5(4),351-365。
5. 高森永、王運昌、葉壽山、陳育忠、邱尚志、史義雄、黃純昭、白璐(2000)。國軍官兵對於加入全民健保後的就醫傾向調查分析。國防醫學,31(5),490-499。
6. 郭素娥、官蔚菁(2001)。應用健康信念模式探討慢性阻塞性肺部疾病患者運動實施之相關因素。長庚護理,12(2),112-122。
7. 陳育忠、王運昌、高森永(2000)。國軍官兵對於加入全民健保態度之影響因素分析。國防醫學,31(5),426-435。
8. 陳明豐(2005)。健康檢查與健康管理。健康世界,229,82-86。陳富莉、李蘭(2001)。臺灣地區不同年齡層民眾的健康行為聚集型態。公共衛生,28(1),37-47。
9. 陳滋茨(1993)。有效的衛生教育模式—健康信念模式。護理新象,3(7),320-328。
10. 黃淑貞(1996)。健康信念影響成人健康習慣之縱慣性研究。衛生教育論文集刊,9,97-113。
11. 葉姿岑(2002)。生命不能重來 防範過勞死 留住健康 留住精彩人生。卓越世界,217,158-160。
12. 黎家銘、楊銘欽(2002)。影響民眾使用全民健保成人健檢及其滿意度之相關因素。 醫務管理期刊,3,70-79。