|
[1] Ahluwalia RK, Hua TQ, Peng JK. On-board and Off-board performance of hydrogen storage options for light-duty vehicles. Int J Hydrogen Energy 2012;37:2891-910. [2] Wolf G, Baumann J, Baitalow F, Hoffmann FP. Calorimetric process monitoring of thermal decomposition of B-N-H compounds. Thermochim Acta 2000;343:19-25. [3] Baitalow F, Baumann J, Wolf G, Jaenicke-Rossler K, Leitner G. Thermal decomposition of B-N-H compounds investigated by using combined thermoanalytical methods. Thermochim Acta 2002;391:159-68. [4] Helary J, Salandre N, Saillard J, Poullain D, Beaucamp A, Autissier D. A physico-chemical study of an NH3BH3-based reactive composition for hydrogen generation, Int J Hydrogen Energy 2009;34:169-73. [5] Palumbo O, Paolone A, Rispoli P, Cantelli R, Autrey T. Decomposition of NH3BH3 at sub-ambient pressures: A combined thermogravimetry-differential thermal analysis-mass spectrometry study. J Power Sources 2010;195:1615-8. [6] Shore SG, Parry RW. The crystalline compound ammonia-borane H3NBH3. J Am Chem Soc 1955;77:6084. [7] Shore SG, Parry RW. Chemical evidence for the structure of the diammoniate of diborane. II. The preparation of ammonia-borane. J Am Chem Soc 1958;80:8. [8] Klooster WT, Koetzle TF, Siegbahn PEM, Richardson TB, Crabtree RH. Study of the N-H center dot center dot center dot H-B dihydrogen bond including the crystal structure of BH3NH3 by neutron diffraction. J Am Chem Soc 1999;121:6337-43. [9] Li L, Yao X, Sun C, Du A, Cheng L, Zhu Z, Yu C, Zou J, Smith SC, Wang P, Cheng HM, Frost RL, Lu GQ. Lithium-Catalyzed Dehydrogenation of Ammonia Borane within Mesoporous Carbon Framework for Chemical Hydrogen Storage. Advanced Functional Materials 2009;19:271. [10] Gutowska A, Li LY, Shin YS, Wang CMM, Li XHS, Linehan JC, Smith RS, Kay BD, Schmid B, Shaw W, Gutowski M, Autrey T. Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angew Chem Int Edit 2005;44:3578-82. [11] Feaver A, Sepehri S, Shamberger P, Stowe A, Autrey T, Cao GZ. Coherent carbon cryogel-ammonia borane nanocomposites for H2 storage. J Phys Chem B 2007;111:7469-72. [12] Sepehri S, Garcia BB, Cao GZ. Tuning dehydrogenation temperature of carbon-ammonia borane nanocomposites. J Mater Chem 2008;18:4034-7. [13] Li ZY, Zhu GS, Lu GQ, Qiu SL, Yao XD. Ammonia Borane Confined by a Metal-Organic Framework for Chemical Hydrogen Storage: Enhancing Kinetics and Eliminating Ammonia. J Am Chem Soc 2010;132:1490-1. [14] Paolone A, Palumbo O, Rispoli P, Cantelli R, Autrey T, Karkamkar A. Absence of the Structural Phase Transition in Ammonia Borane Dispersed in Mesoporous Silica: Evidence of Novel Thermodynamic Properties. J Phys Chem C 2009;113:10319-21. [15] Wang LQ, Karkamkar A, Autrey T, Exarhos GJ. Hyperpolarized Xe129 NMR Investigation of Ammonia Borane in Mesoporous Silica. J Phys Chem C 2009;113:6485-90. [16] Kim H, Karkamkar A, Autrey T, Chupas P, Proffen T. Determination of Structure and Phase Transition of Light Element Nanocomposites in Mesoporous Silica: Case study of NH3BH3 MCM-41. J Am Chem Soc 2009;131:13749-55. [17] Eom K, Kim M, Kim R, Nam D, Kwon H. Characterization of hydrogen generation for fuel cells via borane hydrolysis using an electroless-deposited Co–P/Ni foam catalyst. J Power Sources 2010;195:2830-4. [18] Ramachandran PV, Gagare PD, Preparation of ammonia borane in high yield and purity, methanolysis, and regeneration. Inorg Chem 2007;46:7810-7. [19] Xu Q, Chandra M. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia-borane at room temperature. J Power Sources 2006;163:364-70. [20] Chandra M, Xu Q. Room temperature hydrogenation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts. J Power Sources 2007;168:135-42. [21] Chandra M, Xu Q. Dissociation and hydrolysis of ammonia-borane with solid acids and carbon dioxide: An efficient hydrogen generation system. J Power Sources 2006;159:855-60. [22] Mohajeri N, T-Raissi A, Adebiyi O. Hydrolytic cleavage of ammonia-borane complex for hydrogen production. J Power Sources 2007;167:482-485. [23] Cheng F, Ma H, Li Y, Chen J. Ni1-xPtx (x=0-0.12) hollow spheres as catalysts for hydrogen generation from ammonia-borane. Inorg Chem 2007;46: 788-94. [24] Basu S, Brockman A, Gagore P, Zheng Y, Ramachandran PV, Delgass WN. Chemical kinetics of Ru-catalyzed ammonia-borane hydrolysis. J Power Sources 2009;188:238-43. [25] Clark TJ, Whittell GR, Manners I. Highly efficient colloidal cobalt- and rhodium-catalyzed hydrolysis of H3NBH3 in air. Inorg Chem 2007;46:7522-7. [26] Kalidindi SB, Sanyal U, Jagirdar BR. Nanostructured Cu and Cu@Cu2O core shell catalysts for hydrogen generation from ammonia-borane. Phys Chem Chem Phys 2008;10:5870-4. [27] Umegaki T, Yan JM, Zhang XB, Shioyama H, Kuriyama N, Xu Q. Hollow Ni-SiO2 nanosphere-catalyzed hydrolytic dehydrogenation of ammonia-borane for chemical hydrogen storage. J Power Sources 2009;191:209-16. [28] Yao CF, Zhuang L, Cao YL, Hi XP, Yang HX. Hydrogen release from hydrolysis of borazane on Pt- and Ni-based alloy catalysts. Int J Hydrogen Energy 2008;33:2462-7. [29] Yan JM, Zhang XB, Han S, Shioyama H, Xu Q. Iron-nanoparticle-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Angew Chem Int Ed 2008;47:2287-9. [30] Umegaki T, Yan JM, Zhang XB, Shioyama H, Kuriyama N, Xu Q. Preparation and catalysis of poly(N-vinyl-2-pyrrolidone) (PVP) stabilized nickel catalyst for hydrolytic dehydrogenation of ammonia-borane. Int J Hydrogen Energy 2009;34:3816-22. [31] Metin Ö, Özkar S. Hydrogen generation from the hydrolysis of ammonia-borane and sodium borohydride using water soluble polymer-stabilized cobalt(0) nanoclusters catalyst. Energy Fuels 2009;23:3517-26. [32] Metin Ö, Sahin S, Özkar S. Water-soluble poly(4-styrenesulfonic acid-co-maleic acid) stabilized ruthenium(0) and palladium(0) nanoclusters as highly active catalysts in hydrogen generation from the hydrolysis of ammonia-borane. Int J Hydrogen Energy 2009;34:6304-13. [33] Yan JM, Zhang XB, Han S, Shioyama H, Xu Q. Magnetically recyclable Fe–Ni alloy catalyzed dehydrogenation of ammonia borane in aqueous solution under ambient atmosphere. J Power Sources 2009;194:478-81. [34] Yan JM, Zhang XB, Shioyama H, Xu Q. Room temperature hydrolytic dehydrogenation of ammonia-borane catalyzed by Co nanoparticles. J Power Sources 2010;195:1091-4. [35] Yan JM, Zhang XB, Han S, Shioyama H, Xu Q. Synthesis of longtime water/air-stable Ni nanoparticles and their high catalytic activity for hydrolysis of ammonia-borane for hydrogen generation. Inorg Chem 2009;48:7389-93. [36] Yang XJ, Cheng F, Liang J, Tao Z, Chen J. PtxNi1-x nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia-borane. Int J Hydrogen Energy 2009;34:8785-91. [37] Zahmakıran M, Durap F, Özkar S. Zeolite confined copper(0) nanoclusters as cost-effective and reusable catalyst in hydrogen generation from the hydrolysis of ammonia-borane. Int J Hydrogen Energy 2010;35:187-97. [38] Rakap M, Özkar S. Zeolite confined palladium(0) nanoclusters as effective and reusable catalyst for hydrogen generation from the hydrolysis of ammonia-borane. Int J Hydrogen Energy 2010;35:1305-12. [39] Rakap M, Özkar S. Hydrogen generation from the hydrolysis of ammonia-borane using intrazeolite cobalt(0) nanoclusters catalyst. Int J Hydrogen Energy 2010;35:3341-6. [40] Satyapal S, Read C, Ordaz G, Thomas G. 2006 Annual DOE hydrogen program Merit Review: hydrogen storage. Washington, D.C.: U.S. Department of Energy, http://www. hydrogen.energy.gov/pdfs/review06/2_storage_satyapal.pdf; 2006. [41] Tong DG, Zeng XL, Chu W, Wang D, Wu P. Magnetically recyclable hollow Co-B nanospindles as catalyst for hydrogen generation from ammonia-borane. J Mater Sci Lett 2010;45:2862-7. [42] Patel N, Fernandes R, Guella G, Miotello A. Nanoparticle assembled Co-B thin film for the hydrolysis of ammonia-borane: a highly active catalyst for hydrogen production. Appl Catal B 2010;95:137-43. [43] Rakap M, Kalu EE, Özkar S. Hydrogen generation from the hydrolysis of ammonia-borane using cobalt-nickel-phosphorus (Co-Ni-P) catalyst supported on TiO2 by electroless deposition. Int J Hydrogen Energy 2011;36:254-61. [44] Jiang HL, Umegaki T, Akita T, Zhang XB, Haruta M, Xu Q. Bimetallic Au-Ni nanoparticles embedded in SiO2 nanospheres: synergetic catalysis in hydrolytic dehydrogenation of ammonia-borane. J Chem Eur 2010;16:3132-7. [45] Xu Q, Chandra M. A portable hydrogen generating systems: Catalytic hydrolysis of ammonium-borane. J Alloys Compd 2007;446-447:729-32. [46] Dinc M, Metin Ö, Özkar S. Water soluble polymer stabilized iron(0) nanoclusters: A cost-effective and magnetically recoverable catalyst in hydrogen generation from the hydrolysis of sodium borohydride and ammonia borane. Catal Today 2012;183:10-16. [47] Ferrando R, Jellinek J, Johnston R. Nanpalloys: from theory to applications of alloy clusters and nanoparticles. Chemical Reviews 2008;108:845-910. [48] Pei Y, Zhou G, Luan N, Zong B, Qiao M, Tao MF. Synthesis and catalysis of chemically reduced metal-metalloid amorphous alloys. Critical Review 2012;41:8140-62. [49] Albarazi A, Beaunier P, Costa PD. Hydrogen and syngas production by methane dry reforming on SBA-15 supported nickel catalysts: on the effect promotion by Ce0.75Zr0.25O2 mixed oxide. Int. J. Hydrogen Energy (2012), http://dx.doi.org/ 10.1016/j.ijhydene.2012.10.063 [50] Rakap M, Kalu EE, Özkar S. Polymer-immobilized palladium supported on TiO(2) (Pd-PVB-TiO(2)) as highly active and reusable catalyst for hydrogen generation from the hydrolysis of unstirred ammonia-borane solution. Int J Hydrogen Energy 2011;36:1448-55. [51] Rakap M, Kalu EE, Ozkar S. Hydrogen generation from hydrolysis of ammonia-borane using Pd–PVB–TiO2 and Co–Ni–P/Pd–TiO2 under stirred conditions. J. Power Sources 2012;210:184–190. [52] Xia YD, Mokaya R. A study of the behaviour of mesoporous silicas in OH/CTABr/H2O systems: phase dependent stabilisation, dissolution or semipseudomorphic transformation. J Mater Chem 2003;13:3112-21. [53] Beck JS, VartUli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenkert JL. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 1992;114:10834-43. [54] Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998;279:548-2. [55] Chen XY, Huang LM, Li QZ. Hydrothermal transformation and characterization of porous silica templated by surfactants. J Phys Chem B 1997;101:8460-7. [56] Brunauer S, Emmett PH, Teller E. Adsorption of Gases in Multimolecular Layers. J Am Chem Soc 1938;60:309-19. [57] Barrett EP, Joyner LG, Halenda PP. The Determination of Pore Volume and Area Distributions in Porous Substances Computations from nitrogen isotherms. J Am Chem Soc 1951;73:373-80. [58] He T, Xiong ZT, Wu GT, Chu HL, Wu CZ, Zhang T, Chen P. Nanosized Co- and Ni-Catalyzed Ammonia Borane for Hydrogen Storage. Chem Mater 2009;21:2315-18. [59] Morey MS, O'Brien S, Schwarz S, Stucky GD. Hydrothermal and postsynthesis surface modification of cubic, MCM-48, and ultralarge pore SBA-15 mesoporous silica with titanium. Chem Mater 2000;12:898-911. [60] Jentys A, Pham NH, Vinek H. Nature of hydroxy groups in MCM-41. J Chem Soc Faraday Transactions 1996;92:3287. [61] Anunziata OA, Martinez ML, Beltramone AR. Hydroxyapatite/MCM-41 and SBA-15 Nano-Composites: Preparation, Characterization and Applications. Materials 2009;2:1508-19. [62] Kragten DD, Fedeyko JM, Sawant KR, Rimer JD, Vlachos DG, Lobo RF, Tsapatsis M. Structure of the silica phase extracted from silica/(TPA)OH solutions containing nanoparticles. J Phys Chem B 2003;107:10006-16. [63] Smith J, Seshadri KS, White D. Infrared spectra of matrix isolated BH3NH3, BD3ND3, and BH3ND3. J Molecular Spectroscopy 1973;45:327-37. [64] Komm R, Geanangel RA, Liepins R. Synthesis and studies of poly(aminoborane), (H2NBH2)x. Inorg Chem 1983;22:1684-86. [65] Kim DP, Moon KT, Kho JG, Economy J, Gervais C, Babonneau F. Synthesis and characterization of poly-(aminoborane) as a new boron nitride precursor. Polym Advan Technol 1999;10:702-12. [66] Stuart BH, Organic Molecules. in Infrared Spectroscopy: Fundamentals and Applications. UK: John Wiley & Sons, Ltd, Chichester,; 2005. [67] Hwang HT, Al-Kukhun A, Varma A. High and rapid hydrogen release from thermolysis of ammonia borane near PEM fuel cell operating temperatures: Effect of quartz wool. Int J Hydrogen Energy 2012;37:6764-70. [68] Baumann J, Baitalow E, Wolf G. Thermal decomposition of polymeric aminoborane (H2BNH2)(x) under hydrogen release. Thermochim Acta 2005;430:9-14. [69] Demirci UB, Bernard S, Chiriac R, Toche F, Miele P. Hydrogen release by thermolysis of ammonia borane NH3BH3 and then hydrolysis of its by-product [BNHx]. J Power Sources 2011;196:279-86. [70] Li SF, Tang ZW, Tan YB, Yu XB. Polyacrylamide Blending with Ammonia Borane: A Polymer Supported Hydrogen Storage Composite. J Phys Chem C 2012;116:1544-9. [71] Frueh S, Kellett R, Mallery C, Molter T, Willis WS, King'ondu C, Suib SL. Pyrolytic Decomposition of Ammonia Borane to Boron Nitride. Inorg Chem 2011;50:783-92. [72] Richardson TB, Gala SD, Crabtree RH, Siegbahn PEM. Unconventional hydrogen bonds: Intermolecular B-H…H-N interactions. J Am Chem Soc 1995;117:12875-6. [73] Morrison CA, Siddick MM. Dihydrogen bonds in solid BH3NH3. Angew Chem Int Edit 2004;43:4780-2. [74] Tang ZW, Li SF, Yang ZX, Yu XB. Ammonia borane nanofibers supported by poly(vinyl pyrrolidone) for dehydrogenation. J Mater Chem 2011;21:14616-21. [75] Imperor-Clerc M, Davidson P, Davidson A. Existence of a microporous corona around the mesopores of silica-based SBA-15 materials templated by triblock copolymers. J Am Chem Soc 2000;122:11925-33. [76] Kim JM, Sakamoto Y, Hwang YK, Kwon YU, Terasaki O, Park SE, Stucky GD. Structural design of mesoporous silica by micelle-packing control using blends of amphiphilic block copolymers. J Phys Chem B 2002;106: 2552-8. [77] Umegaki T, Yan JM, Zhang XB, Shioyama H, Kuriyama N, Xu Q. Co–SiO2 nanosphere-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. J Power Sources 2010;195:8209–14. [78] X-ray powder diffraction file JCPDS-ICDD (Joint committee on powder diffraction standard- international centre for diffraction data, Swarthmore, PA, 1999) file no. 06-0696 (Fe) and 04-0850 (Ni). [79] Singh SK, Singh AK, Aranishi K, Xu Q. Noble metal free bimetallic nanoparticle catalyzed selective hydrogen generation from hydrous hydrazine for chemical hdrogen storage. J Am Chem Soc 2011;133:19638-41. [80] Jiang HL, Xu Q. Catalytic hydrolysis of ammonia borane for chemical hydrogen storage. Catalysis Today 2011;170:56-63. [81] Bluhm ME, Bradley MG, Butterick R, Kusari U, Sneddon LG. Amineborane -based chemical hydrogen storage: Enhanced ammonia borane dehydrogenation in ionic liquids. J Am Chem Soc 2006;128:7748–9. [82] Keaton RJ, Blacquiere JM, Baker RT. Base metal catalyzed dehydrogenation of ammonia-borane for chemical hydrogen storage. J Am Chem Soc 2007;129:1844–5. [83] Zahmakiran M, Özkar S. Zeolite framework stabilized rhodium(0) nanoclusters catalyst for the hydrolysis of ammonia-borane in air: Outstanding catalytic activity, reusability and lifetime. Appl Catal B Environ 2009;89:104-10. [84] Eom K, Cho K, Kwon H. Hydrogen generation from hydrolysis of NH3BH3 by an electroplated Co-P catalyst. Int J Hydrogen Energ 2010;35:181-6.
|