跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/05 17:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱仕彰
研究生(外文):Shih-Chang Chiu
論文名稱:應用粒子群演算法於晶粒尺寸設計最佳化之研究
論文名稱(外文):Applying particle swarm optimization approach for optimizing design of chip size
指導教授:許嘉裕許嘉裕引用關係
指導教授(外文):Chia-Yu Hsu
口試委員:詹前隆李家岩
口試委員(外文):Chien-Lung ChanChia-Yen Lee
口試日期:2013-06-27
學位類別:碩士
校院名稱:元智大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:69
中文關鍵詞:晶粒尺寸晶圓曝光效益粒子群最佳化柏拉圖最佳解IC設計
外文關鍵詞:chip sizewafer exposure effectivenessparticle swarm optimizationPareto optimal solutionIC design
相關次數:
  • 被引用被引用:0
  • 點閱點閱:526
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
半導體晶圓為了維持競爭優勢,晶圓廠需要盡可能增加每片晶圓上的晶粒數來降低生產每片晶圓的平均成本。目前已有最佳化晶圓曝光方法,在給定晶粒尺寸下使晶圓的晶粒數量最佳化。另一方面,提高單位每小時的晶圓產出也是生產重要的課題。晶圓光罩曝光次數所需時間,如果用較少的曝光次數完成整片晶圓曝光,將能有效減少生產之時間成本。然而,既有的研究多僅針對提升總晶粒數或減少曝光所需照射次數進行改善,鮮少有研究同時考慮。本研究提出兩階段粒子群最佳化演算法(two-phase non-dominated sorting particle swarm optimization, TNSPSO),利用粒子群演算法結合非支配解快速排序法,在一階段利用支配粒子快速搜尋邊緣解,在第二階段利用菁英的邊緣解快速彌補邊於多的空隙,改善PSO的粒子修正方法,能夠快速地找到柏拉圖最佳解,可在不增加生產費用同時增加最佳化晶圓曝光總晶粒數與光罩曝光的照射次數,有效的降低晶圓曝光時的生產成本。為驗證方法之效度,本研究先利用5組數值資料並與非凌略排序基因演算法(non-dominated sorting genetic algorithm II, NSGA-II)、多目標粒子群演算法(multi-objective particle swarm optimization, MOPSO)比較,實驗結果發現所提出的TNSPSO能夠快速的搜尋到問題的柏拉圖最佳解,實驗並考慮晶圓廠的曝光條件,比較方法的實際可行性結果,實驗發現TNPSO不僅能夠有效提升總晶粒數量以及降低光罩照射次數,且可以找到比NSGA-II、MOPSO更好的晶粒設計組合,證明本研究為有效之方法。
In order to enhance the competitive advantages of wafer fabs, it is crucial for wafer fabs to increase the number of gross dies per wafer to reduce average die cost through productivity improvement.Most of studies focus on yield enhancement, yet little research has been done on cost reduction through increasing gross die number and decreasing shot number simultaneously due to the lack of incorporating manufacturing knowledge with chip design.This study aims to develop a two-phase non-dominated sorting particle swarm optimization (TNSPSO)method to maximize number of gross die and minimize the shot number by suggesting alternative chip features for IC designers. To evaluate the validity of proposed approach, two conventional heuristic algorithms, non-dominated sorting genetic algorithm II (NSGA-II) and multi-objective particle swarm optimization (MOPSO) were used to compare. The experiment results showed that the proposed method can not only find the solutions closer to the Pareto frontier but also the convergence and the diversity of the solutions are better.
書名頁 i
論文口試委員審定書 ii
授權書 iii
中文摘要 vii
英文摘要 viii
致謝 ix
目錄 x
表目錄 xii
圖目錄 xiii
符號表 xvi

第一章 緒論 1
1.1 研究背景與重要性 1
1.2 研究動機 2
1.3 研究目的 2
1.4 論文架構 3
第二章 文獻回顧 4
2.1 整體晶圓效益 4
2.2 晶圓佈置最佳化 5
2.3 多目標最佳化 7
2.4 粒子群最佳化 9
2.5 基因演算法 16
2.6 PSO與GA特性之比較 20
第三章 兩階段粒子群最佳化演算法 22
3.1 問題定義. 22
3.2 兩階段非支配排序粒子群最佳化方法 24
3.3 數值資料分析 34
第四章 分析結果 39
4.1 資料蒐集 39
4.2 實驗分析 40
4.3 結果與討論 57
第五章 結論 65
參考文獻 67
Chien, C.-F., Hsu, S.-C., Chen, C.-P.,, “An iterative cutting procedure for determining the optimal wafer exposure pattern,” IEEE Transactions on Semiconductor Manufacturing, vol. 12, no. 3, pp. 375-377, 1999.

Chien, C.-F., Hsu, S.-C., Deng, J.-F., “A cutting algorithm for optimizing the wafer exposure pattern,” IEEE Transactions on Semiconductor Manufacturing, vol. 14, no. 2, pp. 157-162, 2001.

Chien, C.-F., Hsu, C.-Y., Chang, K., “Overall Wafer Effectiveness (OWE): A novel industry standard for semiconductor ecosystem as a whole,” Computers & Industrial Engineering, vol. 65, no. 1, pp. 117-127, 2013.

Coello, C. A., Lechuga, M. S., “MOPSO: A proposal for multiple objective particle swarm optimization,” in Proceedings of the 2002 Congress on Evolutionary Computation, pp. 1051-1056, 2002.

Coello, C. A.,Pulido, G. T., “Handling multiple objectives with particle swarm optimization,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, 2004.

Deb, K., Partap, A., Agarwal, S., Meyarivan, T., “A fast and elitist Multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 128-197, 2002.

Fonseca, C. M. and Fleming, P.J., “Genetic Algorithm for Multiobjective Optimization,” in Proceeding of the Fifth International Conference on Genetic algorithm, pp. 416-423, 1993.

Goldberg D. E., Richardson J., “Genetic algorithms with sharing for multimodal function optimization,” in Proceedings of the Second International Conference on Genetic Algorithms on Genetic algorithms and their application, pp. 41-49, 1987.

Hsieh, S. T., Sun, T. Y., Chiu, S. Y., Liu, C. C., Liu, C. W., “Cluster based solution exploration strategy for Multiobjective particle swarm optimization, ” in Proceedings of the IASTED International Multi-Conference:artificial intelligence and applications, pp. 295-300, 2007.

Hu, X., Eberhart, R., “Multiobjective optimization using dynamic neighborhood particle swarm optimization,” in Proceedings IEEE World Congress on Computational Intelligence, pp. 1677-1681, 2002.

Holland, J., “Adaptation in Natural and Artificial Systems,” University of Michigan Press, 1975.

Horn, J., Nafpliotis, N., Goldberg, D.E., “A niched Pareto genetic algorithm for Multiobjective optimization,” in Proceedings of the IEEE Conference on Evolutionary Computation, vol. 1, pp. 82-87, 1994.

Hajela, P., and Lin, C. Y., “Genetic search strategies in multicriterion optimal design,” Journal of Structural Optimization, vol. 4, pp. 99-107, 1992.

Kennedy, J., Eberhart, R., “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942-1945, 1995.

Lechuga, M. S., Rowe, J. E., “Particle swarm optimization and fitness sharing to solve multi-objective optimization problem,” IEEE Congress on Evolutionary Computation, vol. 2, pp. 1204-1211, 2005.

Moore, G. E., “Cramming more components onto integrated circuits,” Electronics, vol. 38, no. 8, pp. 114-117, 1965.

Parsopulos, K. E., Vrahatis, M. N., “Particle swarm optimization method in Multiobjective,” in Proceedings ACM Symposium on Applied Computing, pp. 603-607, 2002.

Shi, Y., Eberhart, R., “A Modified Particle Swarm Optimizer,” in Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 69-73, 1998.

Schaffer, J. D., “Multiple objective optimization with vector evaluated genetic algorithms,” in Proceedings of the First International conference on Genetic Algorithms, pp. 93-100, 1985.

Srinivas, N., Deb, K., “Multiobjective optimization using nondominated sorting in genetic algorithms,” Evolutionary Computation, vol. 2, no. 3, pp. 221-248, 1994.

Tsai, S. J., Sun, T. Y., Liu, C. C., Hsieh, S. T., Wu, W. C., Chiu, S. Y., “An improved multi-objective particle swarm optimizer for multi-objective problems,” Expert Systems With Applications, vol. 37, no. 8, pp. 5872-5886, 2010.

Zhang, Q., Mahfouf, M., “A New Structure for Particle Swarm Optimization(nPSO) Application to Single Objective and Multiobjective Problems, ” in Proceedings of the IEEE International Conference on Intelligent Systems, pp. 176-181, 2006.

Zitzler, E., Thiele, L., “Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach,” IEEE Transactions on Evolutionary Computation, vol. 3, no. 4, pp. 257-271, 1999.

Zitzler, E., Laumanns, M., Thiele, L., “SPEA2: Improving the Performance of the Strength Pareto Evolutionary Algorithm,” Computer Engineering and Communication Networks Lab (TIK) and Swiss Federal Institute of Technology (ETH) on Technical Report 103, 2001.

Zitzler, E., Deb, K. Thiele, L., “Comparison of Multiobjective evolutionary algorithms: Empirical results,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 2, pp. 173-195, 2000.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王士元、王瑞琛(2002)。品質特性評量應用於連鎖便利商店提高服務品質之探討。精鍾學報,5,41-66。
2. 王美慧、陳瑞龍、葉陳錦(2006)。民宿旅客之消費行為探討-以花蓮地區為例。戶外遊憩研究,19(4),1-30。
3. 吳乾正(2001)。農園的民宿經營。農業經營管理會訊,27(3),10-11。
4. 沈進成、王伯文(2004)。民宿體驗對遊客意象及忠誠度影響關係研究-以奮起湖地區為例。旅遊管理研究,4(2),195-213。
5. 林万登、黃韶顏、陳靜怡、倪維亞(2004)。北台灣民宿經營知識、態度、行為之研究。中華家政學刊,35,35-48。
6. 林瑩昭(2010)。民宿消費行為對民宿需求相關因素之研究。運動與遊憩研究,4(3),85-105。
7. 胡學彥、龔金山、王振英(2007)。地方產業型民宿供需特性之研究。土地問題研究季刊,6(4),68-84。
8. 孫樹根、劉建麟、莊淑姿(2008)。民宿滿意度與重遊意願關聯性分析-以白河民宿遊客為例。農業推廣學報,24,1-16。
9. 張良漢、高崇倫、林香君、林契文(2006)。台灣業者與遊客對民宿法規認同之研究。生物與休閒事業研究,4(1),69-87。
10. 張彩芸(2002)。海外聯線看民宿。東海岸評論,167,14-17。
11. 陳勁甫,閻淑慧(2006)。鐵道藝術村遊客旅遊行為關係模式之研究。真理觀光學報,4,57-78。
12. 陳昭郎、張東友(2002)。台灣農村民宿之類型及其行銷策略。農業經營管理會訊,33(4),16-20。
13. 陳清淵(2002)。從民宿管理辦法看民宿經營的未來發展。農業經營管理會訊,33(5),21-23。
14. 黃淑君、何宗隆(2001)。有關台北縣坪林茶業博物館遊客滿意度對重遊意願之影響研究。觀光研究學報,7(2),111-123。
15. 葉源鎰、王婷穎(2001)。高雄地區國際觀光旅館之關係品質與顧客再宿意願之相關性研究。戶外遊憩研究,14(4),77-101。