跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2024/12/06 16:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游智翔
研究生(外文):Chih-Shiang Yu
論文名稱:適用於多通訊標準系統之渦輪碼與低密度奇偶校正碼可重置解碼核心設計
論文名稱(外文):A Reconfigurable Decoding Kernel Design of Turbo and LDPC Codes for Multi-standard Communications
指導教授:林承鴻林承鴻引用關係
指導教授(外文):Cheng-Hung Lin
口試委員:魏一勤李宇軒
口試委員(外文):I-Chyn WeyYu-Hsuan Lee
口試日期:2013-06-07
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:65
中文關鍵詞:渦輪碼低密度奇偶校正碼軟式輸入軟式輸出多通訊標準
外文關鍵詞:Turbo codeLDPC codeSISOMulti-standard Communications
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在未來無線通訊傳輸系統下,為了增加傳輸的品質,無線通訊系統都開始採用先進的通道碼 (Channel Coding) 技術,其中以渦輪碼(Turbo Code)與低密度奇偶校驗碼(Low-Density Parity-Check, LDPC),此兩種錯誤更正碼具有非常優異的解碼能力,為現今較常使用之錯誤更正碼。
現今設計一個最佳前向錯誤更正裝置,需要考慮高彈性與不同通訊標準協定。本論文中,提出多模式以四為基底的軟式輸入軟式輸出核心,利用前向和後向解碼演算法與進階最大事後機率解碼演算法,達到運算單元共用的目的。此外,所提出的多模式以四為基底的軟式輸入軟式輸出核心,可同時支援單二元與雙二元渦輪碼和低密度奇偶校驗碼解碼。最後本論文利用TSMC 90nm CMOS製程實現硬體,在操作頻率為167MHz,晶片核心面積大小為0.45mm2。在有效率的硬體成本下,多模式以四為基底的軟式輸入軟式輸架構相較於單一的單二元渦輪碼架構、單一雙二元渦輪碼架構與單一低密度奇偶校驗碼解碼架構結合下,可以達到大約48.43%面積減少。
In order to increase the quality of the transmission, the wireless communication systems adopt advanced channel coding technology , including Turbo Code and (Low-Density Parity-Check, LDPC) codes. These two error correction codes have a very excellent decoding capability in the present generation.
To design a batter forward error correction device that needs to consider high flexible and different communication standards, we propose an area-efficient radix-4 soft-input soft-output (SISO) kernel alternatively that employs the forward and backward algorithm and enhanced Max-log-maximum a posteriori algorithm by sharing computational units. Moreover, the proposed multi-mode radix-4 SISO kernel is to support single/double binary turbo codes (SBTC/DBTC) and low-density parity-check (LDPC) codes. Finally, the proposed SISO decoder is implemented and fabricated in TSMC 90nm CMOS technology. The core size is 0.45 mm2 with operating frequency of 167 MHz. The multi-mode radix-4 SISO kernel achieves 48.43% area reductions compared with integrated individual SBTC, individual DBTC, and individual (LDPC) decoding architectures.
摘要 i
Abstract ii
誌謝 iii
List of Contents iv
List of Tables vi
List of Figures vii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation and Goal 3
1.3 Thesis Organization 6
Chapter 2 Review of Turbo Codes 7
2.1 Turbo Encoder/Decoder Structure 7
2.2 Decoding Algorithm for SISO Decoder 9
2.2.1 MAP Algorithm 10
2.2.2 Radix-4 SB EML-MAP algorithm for turbo decoding 11 2.2.3 Radix-4 DB EML-MAP algorithm for turbo decoding 12
2.3 Timing Chart of MAP Decoding 13
2.3.1 Sliding Window Approach 13
2.3.2 Parallel Window Approach 14
Chapter 3 Review of Low-Density Parity-Check Codes 16
3.1 LDPC Encoder/Decoder Structure 16
3.2 Decoding Algorithm for SISO Decoder 20
3.2.1 Sum Product Algorithm 21
3.2.2 Forward Backward Algorithm 23
3.2.3 Radix-4 FBA for LDPC decoding 24
3.3 Timing diagram of FBA Decoding 27
Chapter 4 Proposed Multi-Mode Radix-4 SISO Kernal Design 29
4.1 Key Components Design for Multi-mode Radix-4 SISO Kernel 29
4.1.1 The Architecture of SISO kernel 29
4.1.2 The timing diagram for SISO kernel 30
4.1.3 Branch Metrics Uints 33
4.1.4 Recursion Processor Unit 35
4.1.5 A-posteriori Calculator Uint 40
4.1.6 Extrinsic Calculator Uint 44
Chapter 5 VLSI Implementation of Multi-Mode Radix-4 SISO Kernal Design 45
5.1 Determation of Worldlength 45
5.2 Hardware Overhead Analysis of Proposed SISO Kernel 47
5.3 Throughput Analysis 49
5.4 Chip Implementations 51
5.5 Comparisons 53
5.6 Application of the Protoyping Design 55
Chapter 6 Conclusion 61
References 62
[1] 3rd Generation Partnership Project (3GPP), [Online]. Available:http://www.3gpp.org/
[2] Worldwide Interoperability for Microwave Access (WiMAX), [Online]. Available:http://www.wimaxforum.org/home/
[3] Tejas Bhandare,“LTEandWiMAXComparison,”[Online].Available:
http://www.halcyonwireless.com/LTE%20and%20WiMAX%20Comparison-TejasBhandare.pdf.
[4] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting coding and decoding: Turbo-codes,” in Proc. IEEE Int. Conf. Commum. (ICC), vol. 2, pp. 1064-1070, May 1993.
[5] R. Gallager, “Low-Density Parity-Check Codes,” IRE Trans. Inf. Theory, vol. 7, pp. 21–28, Jan. 1962.
[6] C. Berrou and M. Jezequelm, “Non-binary convolutional codes for turbo coding,” Electron. Lett., vol.35, no.1, pp. 39-40, Jan. 1999
[7] Digital Video Broadcasting (DVB). [Online]. Available: http://www.dvb.org/
[8] D. J. C. MacKay, “Good Error-Correcting Codes based on Very Sparse Matrices,” IEEE Trans. Inf. Theory, vol. 45, no. 3, pp. 399–431, Jan. 1999.
[9] M. Alles, T. Vogt, and N. When, “FlexiChaP: A reconfigurable ASIP for convolutional, turbo, and LDPC code decoding,” in Proc. Int. Symp. Turbo Codes and Related Topics, pp. 84 –89, sep. 2008.
[10] Y. Sun and J. Cavallaro, “A flexible LDPC/Turbo decoder architecture,” Journal of Signal Processing Systems, pp. 1–16, 2010.
[11] C.-H. Lin, C.-Y. Chen, and A.-Y. Wu, “Area-efficient scalable MAP architecture design for high-throughput multistandard convolutional turbo decoding,” IEEE Tran. Very Large Scale Integr. Syst., Feb. 2011 , Volume 19, pp. 305 - 318 .
[12] IEEE 802.16 Working Group, [Online]. Available: http://www.ieee802.org/16/
[13] A. J. Viterbi, “An intuitive justification and simplified implementation of the MAP decoder for convolutional codes,” IEEE J. Selected Area in Commun., vol. 16, no.2, pp. 260-264, Feb. 1998.
[14] X.-Y. Hu, E. Eleftheriou, D.-M. Arnold, and A. Dholakia, “Efficient implementation of the sum-product algorithm for decoding LDPC codes,” in Proc. IEEE Globecom, pp. 1036–1036, Nov. 2001.
[15] C. Schurgers, F. Catthoor, and M. Engels, “Memory optimization of MAP turbo decoder algorithms,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 9, no. 2, pp. 305-312, Apr. 2001.
[16] H. Zhong and T. Zhang, “Design of VLSI Implementation-Oriented LDPC Codes,” in Proc. IEEE 58th Vehicular Technology Conf., vol. 1, Oct. 2003, pp. 670–673.
[17] Hao Zhong and Tong Zhang, “Block-LDPC: A Practical LDPC Coding System Design Approach, ” IEEE Trans. Circuits Syst. I, Reg. Papers, , vol. 52, No. 4, April 2005, p766-p775
[18] M. M. Mansour and N. R. Shanbhag, “High-throughput LDPC decoders” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 11, pp. 976-996, Dec. 2003.
[19] S. Lin, and D. J. Costello, Error Control Coding: Fundamentals and Application, PEARSON/ Prentice Hall, second edition 2004.
[20] J.-H. Kim and I.-C. Park, “Bit-level extrinsic information exchange method for double-binary turbo codes,” IEEE Trans. Circuits. Syst. II, vol. 56, no.1, pp. 81–85, Jan. 2009.
[21] J.-H. Kim and I.-C. Park, “Double-binary circular turbo decoding based on border metric encoding,” IEEE Trans. Circuits. Syst. II, Exp. Briefs, vol. 55, no. 1, pp. 79–83, Jan. 2008.
[22] D.-S. Lee and I.-C. Park, “Low-power log-MAP decoding based on reduced metric memory access,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 6, pp. 1244–1253, June 2006.
[23] J.-H. Kim and I.-C. Park, “A 50Mbps double-binary turbo decoder for WiMAX based on bit-level extrinsic information exchange,” in Proc. IEEE Asian Solid-State Circuits Conf. (ASSCC), 2008, pp. 305-308.
[24] M.-C. Hu, C.-L. Chen, H.-C. Chang, S.-J. Jou, and C.-Y. Lee, “A 0.92mm2 23.4mW fully-compliant CTC decoder for WiMAX 802.16e application,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), pp. 191-194, Sep. 2009.
[25] Xin-Yu Shih, Cheng-Zhou Zhan, Cheng-Hung Lin and An-Yeu (Andy) Wu, “An 8.29 mm2 52mW Multi-Mode LDPC Decoder Design for Mobile WiMAX System in 0.13μm CMOS Process” , IEEE J. Solid-State Circuits, March 2008, Volume 43, pp.672- 683.
[26] M. Scarpellino, A. Singh, E. Boutillon,and G. Masera , "Reconfigurable Architecture for LDPC and Turbo Decoding: A NoC Case Study, ” IEEE International Symposium on Spread Spectrum Techniques and Applications (ISSSTA), ” pp.671-676, Aug. 2008.
[27] Chen-Hung Lin, Chun-Yu Chen, and An-Yeu Wu (Andy), “Area-Efficient Scalable MAP Processor Design for High-Throughput Multistandard Convolutional Turbo Decoding,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems , Feb. 2011 , Volume 19, pp. 305 - 318.
[28] S.-J. Lee, N. R. Shanbhag, and A. C. Singer, “A 285-MHz pipelined MAP decoder in 0.18.um CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1718–1725, Aug. 2005.
[29] C.-H. Tang, C.-C. Wong, C.-L. Chen, C.-C. Lin, and H.-C. Chang, “A 952MS/s max-log MAP decoder chip using radix-4X4 ACS architecture,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), 2006,pp. 79–82.
[30] C.-H. Lin, C.-Y. Chen, and A.-Y. Wu, “High-throughput 12-Mode CTC decoder for WiMAX standard,” in Proc. IEEE Int. Symp. VLSI Des., Autom., Test (VLSI-DAT), 2008, pp. 216–219.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top