跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/13 13:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘宣佑
研究生(外文):Hsuan-Yu Pan
論文名稱:結構參數之隨機子空間鑑別法
論文名稱(外文):Estimation of structure parameters by Stochastic Subspace Identification
指導教授:楊大中楊大中引用關係
指導教授(外文):Tachung Yang
口試委員:邱傳聖孫忠銓
口試委員(外文):Chuan-Sheng ChiouChung-Chyuan Sun
口試日期:2013-01-24
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:52
中文關鍵詞:接點參數鑑別隨機子空間鑑別法
外文關鍵詞:JointParameter identificationStochastic subspace identification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:369
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的在使用隨機子空間鑑別法,鑑別結構中的接點參數,有別於一般頻率域的方法,使用時域的方法,減去人工給予結構物衝擊的操作,提升鑑別品質。
隨機子空間鑑別法是利用環境所造成的各種微小震動,當做鑑別時,給予結構物的震動,以求得結構物的反應值,再進行參數分析。隨機子空間鑑別法使用了相關性、投影、奇異值分解等方法。
使用MATLAB模擬時發現,只要了解待測結構物的特性,對程式進行適當的調整,隨機子空間鑑別法鑑別後的結果不差,誤差都在百分之5之下,且僅需使用加速規所測得的訊號就可鑑別。
This research aims at estimation of strueture using the data driven stochastic subspace identification. Differ from frequency domain method . The time domain method can resuce the people give an input for structural and promotethe efficiency of the identification processes.
The data driven stochastic subspace identification is use the noise by environment and use those noise to arouse structural to get the output to do analysis. Stochastic subspace identification use the covariance and projection and singular value decomposition.
Use the MATLAB to simulate, the result erro margin not over five percent, if understand the structural characteristic and to adjust the program, and only ues the accelerometer to identification.
中文摘要..............................................vi
英文摘要.............................................vii
致謝................................................viii
目錄..................................................ix
表目錄................................................xi
圖目錄...............................................xii
符號表..............................................xiii
第一章  緒論..........................................1
1.1   研究動機.......................................1
1.2   文獻回顧.......................................5
1.3   研究目標.......................................7
1.4   本文大綱.......................................8
第二章  理論推導......................................9
2.1   State Sapace Model............................9
2.1.1  離散時間的State-Space Models..................11
2.2   馬可夫參數....................................13
2.3   SSI-COV理論架構...............................14
2.3.1  隨機過程之基本假設.............................14
2.3.2  量測資料重組...................................15
2.3.3  SSI-COV識別法.................................16
2.4   SSI-DATA理論架構...............................18
2.4.1  由輸出向量重建系統狀態..........................18
2.4.2  投影概念......................................19
2.5   提出系統模態數.................................21
2.6   討論..........................................23
2.6.1  SSI-COV之特性..................................23
2.6.2  SSI-DATA之特性.................................23
第三章  數值模擬.......................................26
3.1   驗證隨機子空間鑑別法之可行性.....................27
3.1.1  各種雜訊之鑑別結果..............................27
3.2   模擬結論.......................................32
第四章  結論..........................................46
參考文獻...............................................48
簡歷...................................................52
1. Beards, C. F., 1986, “The damping of structural vibration by controlled interfacial slip in joints,” ASMEPublication, 81-DET-86.
2. Inamura, T. and Stata, T. 1979, “Stiffness and damping properties of the elements of a machine tool structure,” Annuals of the CIRP, Vol. 28, pp. 235-239.
3. Yuan, J. X. and Wu, S. M. 1985, “Identification of the joint structural parameters of machine tool by DDS and FEM,”ASME Transaction journal of engineering of industry, Vol. 107, pp. 64-69.
4. Ljung, L., 1987, System Identification: Theory for the User, 1st edition, Prentice-Hall, englewood cliffs, New Jersey.
5. Ljung, L., 1999, System Identification: Theory for the User, 2nd edition, Prentice-Hall, Upper Saddle River, New Jersey.
6. Brincker, R., Zhang, L., and Andersen, P., 2001, “Modal identification of output-only systems using frequency domain decomposition,” Smart Materials and Structures, Vol. 10, pp. 441-445.
7. Ibrahim, S. R and Mikulcik, E. C., 1976, “The experimental determination of vibration test parameters from time responses”, 46th Shock and Vibration Bulletin, pp. 187-196.
8. Ho, B. L. and Kalman, R.E.,1996, "Effective Construction of linear state-variable modal from input/output data", Regelungstechnik, Vol. 14, pp. 545-648.
9. Zeiger,H. P. and McEwen, A. J., 1974, "Approximate linear realization of given dimension via hos's algorithm,” IEEE Transaction automatic control, Vol. AC-19, No-2, pp. 53.
10. Juang, J. N. and Pappa, R. S., 1985, "An eigensystem realization algorithm for modal parameter identification and modal reduction,” Journal of Guidance, Control and Dynamics, Vol. 8, No. 5, pp. 620-627.
11. Juang, J. N., Cooper, J. E., and Wright, J. R., 1988, “An eigensystem realization algorithm using data correlations(ERA/DC) for modal parameter identification,” Contro Ttheory and Advanced Technology, Vol4, No. 1, pp. 5-14.
12. Juang, J. N, 1993, Applied System Identification, PTR Prentice Hall Englewood Cliffs, New Jersey.
13. Van Overschee P. and De Moor B., 1996, Subspace Identification for Linear System: Theory, Implementation and Applications, Kluwer Academic Publishers, Belgium.
14. Van Overschee, P. and De Moor B., 1991, “Subspace algorithm for the stochastic identification problem,” Proceedings of the 30th IEEE Conference on Decision and Control, pp. 1321-1326.
15. Van Overschee, P. and De Moor, B., 1993, “Subspace algorithms for the stochastic identification problem,” Automatic, Vol. 29 No. 3, pp. 649-660.
16. Peeters, B., 2000, “System identification and damage detection in civil engineering,” PhD Thesis, Department of Civil Engineering, Katholieke Universiteit Leuven, Belguim.
17. Liu, Y. C., 2011, “Application of covariance driven stochastic subspace identification,” Master Thesis Department of Civil Engineering College of Engineering National Taiwan University.
18. Robert L. Williams II, Douglas A. Lawrence,2007, Linear State-Space Control Systems, Wiley.
19. Zhang, L., Brincker, R., and Andersen, P., 2005, “An overview of operational modal analysis: major development and issuess” Proceedings of the 1st International Operational Modal Analysis Conference (IOMAC), Copenhagen, Denmark.
20. Thomas G. Carne, George H. James III, 2010, “The inception of OMA in the development of modal testing technology for wind turbines,” Mechanical Systems and Signal Processing Vol. 24 pp. 1213-1226.
21. Peeters, B., DE Roeck, G., and Andersen, P., 1999, “Stochastic system identification: uncertainty of the estimated modal parameters” IMAC 17, Feb 8-11, Kissimmee, FL, pp. 231-237.
22. Andersen, P., Brincker, R., peeters, B., De Roeck, G., and Hermans, L., 1999, “Comparison of system identification methods using ambient bridge test data” IMAC 17, Feb 8-11, Kissimmee, FL, pp. 1035-1041.
23. Hassan Ghasemi, Student Member, Claudio Ca˜nizares, Senior Member, and Ali Moshref, 2005, “Oscillatory stability limit prediction using stochastic subspace identification” IEEE , Vol. 21, pp. 736-745.
24. Thai, H., DeBrunner, V., DeBrunner, L. S., Havlicek, J. P., Mish, K, Ford, K., and Medda, A., 2007, “Deterministic-stochastic subspace identification for bridges” IEEE 14, Aug. 26-29, Thai, h., pp. 749-753.
25. Lin, P., Zhang, N., and Ni, B., 2008, “On-line modal parameter monitoring of bridges exploiting multi-core capacity by recursive stochastic subspace identification method” AACC, June. 11-13, Ping Lin, pp. 632-637.
26. Michael Döhler and Laurent Mevel, 2010, Fast multi-order stochastic subspace identification.
27. Peeters B., and De Roeck, G., 1999, “Reference-based stochastic subspace identification for output-only modal analysis” Mechanical Systems and Signal Processing Vol. 13, No.6 pp. 855-878.
28. Bart Peeters and Guido De Roeck, 2001, "Stochastic system identification for operational modal analysis: a review" Journal of Dynamic Systems, Measurement, and Control, Vol. 123, No.4 pp. 659-668..
29. Reynders, E., and De Roeck, G., 2008, "Reference-based combined deterministic–stochastic subspace identification for experimental and operational modal analysis,” Mechanical Systems and Signal Processing Vol.22, No.3 pp. 617–637
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top