跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/02 04:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳孝隆
研究生(外文):Shiow-Long Chen
論文名稱:可撓式不鏽鋼基板矽薄膜太陽能電池光捕捉研究
論文名稱(外文):The research for light trapping of flexible amorphoussilicon thin film solar cell deposited on stainless steel foil substrate
指導教授:李碩仁李碩仁引用關係
指導教授(外文):Shou-Jen Lee
口試委員:柯文政韓國璋李其源鍾明裕
口試委員(外文):Wen-Cheng KeKuo-Chang HanChi-Yuan LeeMing-Yu Chung
口試日期:2013-01-16
學位類別:博士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:134
中文關鍵詞:非晶矽薄膜太陽能電池可撓式不鏽鋼箔基板光捕捉
外文關鍵詞:Amorphous silicon thin film solar cellFlexible stainless steel foil substrateLight trapping
相關次數:
  • 被引用被引用:0
  • 點閱點閱:910
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要開發可撓式不鏽鋼箔基板非晶矽薄膜太陽能電池整體製程技術,並分別應用電化學拋光(EP)及電化學機械拋光(ECMP)技術,於不鏽鋼箔基板製作奈米顯微結構,以提高可撓式矽薄膜太陽能電池效能,完成SS304/Mo/Ag/AZO/p-i-n/AZO電池製程技術開發。研究結果發現,SS304基板經EP與ECMP處理後表面粗糙度分別為Ra 0.052μm; Ra 0.022μm,可得到EP SS304電池開路電壓Voc=0.64V、短路電流密度Jsc=10.90mA/cm2、填充因子FF=55%、轉換效率η=3.84%,及ECMP SS304電池Voc=0.77V, Jsc=11.24mA/cm2, FF=53%, η=4.59%,顯示不鏽鋼箔基板經EP與ECMP處理均可有效增加光電流,且ECMP較EP處理之不鏽鋼基板能獲得更高之電池效能。於電池環境測試部份,經-40℃~85℃溫度循環一百次後,電池效率衰退0.33%;經一百次60°反覆撓度測試後,效率衰退0.08%;依ASTM D3359規範,薄膜附著力可達4B等級,百格內脫落率約3%。
This study presents a flexible stainless steel(SS) foil substrate for amorphous silicon(a-Si:H) n-i-p thin-film solar cells. The SS substrates are treated by electrochemical polishing(EP) and electrochemical mechanical polishing(ECMP) respectively to form a nano-scale surface morphology. The rough morphology of SS substrate could result in high diffusion reflection but also cause high density of micro-cracks in the deposited photoelectric layers. Therefore, to get a balance between the light trapping performance and the quality of the deposited photoelectric layers is the focus of this study. An a-Si:H thin-film solar cell with SS304/Mo/Ag/AZO/p-i-n/AZO structure using electrochemical treated flexible SS substrate is developed.
The results show that the center line average roughness(Ra) of 0.063 μm and 0.027 μm are achieved by EP and ECMP processes. Then, the PECVD is utilized to deposit the amorphous silicon p-i-n photoelectric layers on the treated SS304 substrate and the efficiency of solar cells is measured. Open circuit voltage(Voc)of 0.64 V, short-circuit current density (Jsc) of 10.90 mA/cm2, fill factor(FF) of 55%, and conversion efficiency(η) of 3.84% are measured on the cell with EP substrate. Voc of 0.77 V, Jsc of 11.24 mA/cm2, FF of 53%, and η of 4.59% are measured on the cell with ECMP substrate. It shows that the stainless steel foil substrates treated by both EP and ECMP processes can effectively increase the light current of the cells but the cell with ECMP substrate has better cell performance than the cell with EP substrate.
In order to understand the reliability of the cells, an environmental test, such as thermal-cycle test (-40℃ ~ 85℃) is carried for a hundred cycles. The efficiency of the thermal-cycle tested cell is decreased by 0.33%. A 60° bending test is carried for a hundred cycles on a cell. The efficiency of the bending tested cell is decreased by 0.08%. For adhesion test, the deposited film can achieve 4B grade of adhesion according to ASTM D3359 standard with a chipping rate about 3%.
書名頁 ……………………………………………………………… i
論文口試委員審定書 ……………………………………………… ii
授權書 ……………………………………………………………… iii
中文摘要 …………………………………………………………… vii
英文摘要 …………………………………………………………… viii
誌謝 ………………………………………………………………… x
目錄 ………………………………………………………………… xi
圖目錄 ……………………………………………………………… xiv
表目錄 ……………………………………………………………… xvii
符號說明 …………………………………………………………… xix
第一章 緒論 ……………………………………………………… 1
1.1研究背景與目的 …………………………………………… 1
1.2太陽能電池簡介 …………………………………………… 4
1.2.1 太陽能電池分類 …………………………………… 4
1.2.2 可撓式薄膜太陽能電池 …………………………… 8
1.2.3 非晶矽薄膜太陽能電池 …………………………… 11
1.3全球技術/市場發展趨勢分析 …………………………… 14
1.4光捕捉 ……………………………………………………… 19
1.5研究目標與論文架構 ……………………………………… 22
第二章 文獻回顧 …………………………………………………… 26
2.1可撓式不銹鋼箔非晶矽薄膜太陽能電池結構 …………… 26
2.2.1 正面電極 …………………………………………… 27
2.2.2 背面電極 …………………………………………… 30
2.2非晶矽薄膜電池光補捉結構 ……………………………… 31
2.3微結構表面形態量化指標 ………………………………… 34
第三章 研究方法與實驗設備 ……………………………………… 40
3.1實驗材料及試片準備 ……………………………………… 41
3.2沉積原理及實驗設備 ……………………………………… 44
3.2.1 黃光微影、蝕刻及剝離法製程 …………………… 44
3.2.2 ECM ………………………………………………………………………………… 48
3.2.3 連續式多腔體磁控濺鍍系統 ……………………… 55
3.2.4 超高頻電漿輔助化學氣相沉積系統 ……………… 58
3.3量測分析儀具 ……………………………………………… 61
3.3.1 表面輪廓儀 ………………………………………… 61
3.3.2 3D雷射掃描共軛焦顯微鏡 ………………………… 61
3.3.3 紫外光/可見光/近紅外光分光光譜儀 …………… 62
3.3.4 場發射掃描式電子顯微鏡 ………………………… 63
3.3.5 太陽光能模擬器 …………………………………… 63
3.3.6 熱循環試驗 ………………………………………… 64
3.3.7 百格刀附著力試驗 ………………………………… 65
第四章 可撓式不鏽鋼箔基板微結構光學模擬 …………………… 66
4.1 TracePro光線追跡模擬軟體介紹 …………………… 66
4.2 光捕捉微結構研究方法 ………………………………… 67
4.3 光學模擬與實際反射率量測關係 ……………………… 68
4.4 TracePro微結構光學模擬指標與分析規劃 ………… 68
4.4.1微結構光學模擬指標 ……………………………… 68
4.4.2 模型表面形貌與尺寸設計 ………………………… 71
4.5 微結構光學模擬 ………………………………………… 72
4.5.1 微結構對霧度之影響 ……………………………… 72
4.5.2 微結構對漫反射角度分布之影響 ………………… 74
第五章 Etching/ Lift-off可撓式不鏽鋼箔基板微結構研究 … 82
5.1 SS304原始基板電池特性 ………………………………… 82
5.2光捕捉微結構製作 ………………………………………… 84
5.2.1 Etching長條柵狀及井字格狀微結構 …………… 84
5.2.2 Lift-off長條柵狀微結構 ……………………… 85
5.3 光捕捉微結構實際製程與模擬參數修正 ……………… 87
5.4 基板微結構對矽薄膜電池特性之影響 ………………… 89
第六章 具微結構AZO透明導電薄膜研究 ………………………… 93
6.1 電池結構設計與實驗規劃 ……………………………… 93
6.2 AZO蝕刻時間對矽薄膜電池特性之影響 ……………… 93
第七章 EP/ ECMP可撓式不鏽鋼箔基板微結構研究 …………… 99
7.1 EP/ ECMP SS304製程開發 …………………………… 99
7.2 EP/ ECMP SS304表面形貌特性分析 ………………… 99
7.3 EP/ ECMP SS304矽薄膜電池特性 …………………… 102
第八章 可靠度環境試驗 …………………………………………… 105
8.1熱循環測試 ………………………………………………… 105
8.2撓曲測試 …………………………………………………… 108
8.3 膜層附著力測試 …………………………………………… 110
第九章 結論與未來展望 ……………………………………………… 112
9.1 結論 ………………………………………………………… 112
9.2 未來展望 …………………………………………………… 115
參考文獻 ……………………………………………………………… 117
簡歷 …………………………………………………………………… 132
1. “Renewables 2012 global status report, ”Renewable Energy Policy Network for the 21st Century(REN 21), 2012.
2. ASTM Subcommittee G03.09, G173–03 “Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface,” Annual Book of ASTM Standards, Vol. 14.04, 2003.
3. A.E. Becquerel, “Mémoire sur les effets électriques produits sous l'influence des rayons solaires,” Comptes Rendus, Vol. 9, pp.561, 1839.
4. D. M. Chapin, C. S. Fuller and G. L. Pearson, “A new silicon p–n junction photocell for converting solar radiation into electrical power,” Journal of Applied Physics, Vol. 25, Issue 5, pp. 676–677, 1954.
5. J. Zhao, A. Wang, M. A. Green, “24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates,” Progress in Photovoltaics: Research and Applications, Vol. 7, Issue 6, pp. 471–474, 1999.
6. O. Schultz, S. W. Glunz, G. P. Willeke, “Multicrystalline silicon solar cells exceeding 20% efficiency,” Progress in Photovoltaics: Research and Applications, Vol. 12, Issue 7, pp. 553–558, 2004.
7. J. Meier, J. Sitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films, Vol. 451–452, pp. 518–524, 2004.
8. http://www.greentechmedia.com/articles/read/stealthyalta-devices-next -gen-pv-challenging-the-status-quo/
9. C. J. Keavney, V. E. Haven, S. M. Vernon, “Emitter structures in MOCVD InP solar cells,” Conference Record, 21th IEEE Photovoltaic Specialists Conference, pp. 141–144, 1990.
10. X. Wu, J. C. Keane, R. G. Dhere, C. DeHart, A. Duda, T. A. Gessert, S. Asher, D. H. Levi, P. Sheldon, “16.5%–efficient CdS/CdTe polycrystalline thin–film solar cell,” Proceedings of 17th European Photovoltaic Solar Energy Conference, pp. 995–1000, 2001.
11. I. Repins, M. Contreras, Y. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egaas, C. DeHart, J. Scharf, B. E. McCandless, R. Noufi, “19.9%–efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Progress in Photovoltaics: Research and Applications, Vol. 16, Issue 3, pp. 235–239, 2008.
12. H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell,” Nature, Vol. 261, pp. 402–403, 1976.
13. B. O'regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, Vol. 353, pp. 737–740, 1991.
14. N. Koide, R. Yamanaka, H. Katayama, “Recent advances of dye-sensitized solar cells and integrated modules at SHARP,” MRS Proceedings; Vol. 1211, pp. 1211-R12-02, 2009.
15. H. Kallmann, M. pope, “Photovoltaic Effect in Organic Crystals,” The Journal of chemical physics, Vol. 30, Issue 2, pp.585–586, 1959.
16. C. K. Chiang, C. R. Fincher Jr, Y. W. Park, A. J. Heeger, “Electrical conductivity in doped polyacetylene,” Physical Review Letters, Vol.39, Issue 17, pp. 1098–1101, 1977
17. http://www.m-kagaku.co.jp/english/aboutmcc/RC/special/feature1. html
18. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, “Solar cell efficiency tables (version 40),” Progress in Photovoltaics:Research and Applications, Vol. 20, Issue 5, pp.606–614, 2012.
19. “Best research – cell efficiencies,” National Renewable Energy Laboratory(NREL), 2012.
20. C. Koch, M. Ito, M. Schubert, “Low–temperature deposition of amorphous silicon solar cells,” Solar Energy Materials and Solar Cells, Vol. 68, Issue 2, pp. 227–236 , 2001.
21. M. Brinza, J. K. Rath, R. E. I. Schropp, “Thin film silicon n–i–p solar cells deposited by VHF PECVD at 100°C substrate temperature,” Solar Energy Materials and Solar Cells, Vol. 93, Issue 6–7, pp. 680–683, 2009.
22. A. Vijh, X. Yang, W. Du, X. Deng, “Triple–junction amorphous silicon-based flexible solar minimodule with integrated interconnects,” Solar Energy Materials and Solar Cells, Vol. 90, Issue 16, pp. 2657–2664, 2006.
23. M. Izu, T. Ellison, “Roll–to–roll manufacturing of amorphous silicon alloy solar cells with in situ cell performance diagnostics,” Solar Energy Materials and Solar Cells, Vol.78, Issue 1–4, pp. 613–626, 2003.
24. Jenny Nelson, “The physics of solar cell,” Imperial College Press, pp. 216, 2002.
25. H. F. Sterling, R. C. G. Swann, “Chemical vapour deposition promoted by r.f. discharge,” Solid–state Electronics, Vol. 8, Issue 8, pp. 653–654, 1965.
26. R. C. Chittick, J. H. Alexander, H. F. Sterling, “The preparation and properties of amorphous silicon,” Journal of the Electrochemical Society, Vol. 116, Issue 1, pp. 77–81, 1969.
27. W. E. Spear, P. G. Le Comber, “Investigation of the localised state distribution in amorphous Si films,” Journal of Non–Crystalline Solids, Vol. 8–10, pp. 727–738, 1972.
28. W. E. Spear, P. G. Le Comber, “Substitutional doping of amorphous silicon,” Solid State Communications, Vol. 17, Issue 9, pp. 1193–1196, 1975.
29. A. Triska, D. Dennison, H. Fritzsche, “Hydrogen content in amorphous Ge and Si prepared by rf decomposition of GeH4 and SiH4,” Bulletin of the American Physical Society, Vol. 20, Issue 39, pp. 392, 1975.
30. A. J. Lewis, “Conductivity and thermoelectric power of amorphous germanium and amorphous silicon,” Physical Review B, Vol. 13, Issue 6, pp. 2565–2575, 1976.
31. W. Paul, A. J. Lewis, G. A. N. Connell, T.D. Moustakas , “Doping, schottky barrier and p–n junction formation in amorphous germanium and silicon by r. f. sputtering,” Solid State Communications, Vol. 20, Issue 10, pp. 969–972, 1976.
32. D.E. Carlson, C.R. Wronski, “Amorphous silicon solar cell,” Applied Physics Letters, Vol. 28, Issue 11, pp.671–673, 1976.
33. H. Fritzsche, “Early research on amorphous silicon:errors and missed opportunities,” Materials Research Society Symposia Proceedings, Vol. 609, A17.1, pp. 1–12, 2000.
34. D. A. Neamen, “An introduction to semiconductor devices,” McGraw–Hill Companies, Inc., 2006.
35. D. L. Staebler, C. R. Wronski, “Reversible conductivity changes in discharge–produced amorphous Si,” Applied Physics Letters, Vol. 31, Issue 4, pp. 292–294, 1977.
36. Guha, “In technology and applications of amorphous silicon,” Edited by R. A. Street, pp.252–305, Springer, Berlin, 1999.
37. H. R. Park, J. Z. Liu, and S. Wagner, “Saturation of the light–induced defect density in hydrogenated amorphous silicon,” Applied Physics Letters, Vol. 55, Issue 25, pp. 2658–2660, 1989.
38. EnergyTrend, http://pv.energytrend.com.tw/pricequotes.html
39. “PV status report 2012,” Institute for Environment and Sustainability(IES), 2012.
40. “Global market outlook for photovoltaics until 2016,” European Photovoltaic Industry Association(EPIA), 2012.
41. 2012能源產業技術白皮書,第貳章「國內外能源產業技術發展趨勢」,經濟部能源局,中華民國101年5月。
42. “Technology roadmap – solar photovoltaic energy,” International Energy Agency(IEA), 2010.
43. Tomas Markvart, “Solar electricity,” John Wiley & Sons, Ltd, pp. 41, 2000.
44. E. Yablonovitch, “Statistical ray optics,” Journal of the Optical Society of America, Vol. 72, No.7, pp. 899–907, 1982.
45. M. Vaněček, A. Poruba, Z. Remeš, N. Beck, M. Nesládek , “Optical properties of microcrystalline materials,” Journal of Non–Crystalline Solids, Vol. 227-230, Part 2, pp. 967–972, 1998.
46. R. Brendel, A. Goetzberger, “Thin–film crystalline silicon solar cells : physics and technology,” Wiley-VCH, pp.15, 2003.
47. D. Redfield, “Multiple–pass thin–film silicon solar cell,” Applied Physics Letters, Vol. 25, Issue 1, pp. 647–6481, 1974.
48. R. K. Carlson, Y. Shim, W. B. Ingler Jr., “Optimization of indium tin oxide by pulsed DC power on single junction amorphous silicon solar cells,” Thin Solid Films, Vol. 519, Issue 18, pp. 6053–6058, 2011.
49. P. Alpuim, A. Samantilleke, E. Marins, F. Oliveira1, M. F. Cerqueira1, L. Rebouta, S. Stefanov, S. Chiussi, C. Serra, J.E. Bourée, “Amorphous silicon thin-film solar cells deposited on flexible substrates using different zinc oxide layers,” physica status solidi(C)Vol. 7, Issue 3–4, pp. 1061–1064, 2010.
50. Z. Hu, X. Liao, H. Diao, Y. Cai, S. Zhang, E. Fortunato, R. Martins, “Hydrogenated p–type nanocrystalline silicon in amorphous silicon solar cells,” Journal of Non-Crystalline Solids, Vol. 352, Issue 9–20, pp. 1900–1903, 2006.
51. M.K. van Veen, C.H.M. van der Werf, J.K. Rath, R.E.I. Schropp, “Incorporation of amorphous and microcrystalline silicon in n–i–p solar cells,” Thin Solid Films, Vol. 430, Issues 1–2, pp. 216–219, 2003.
52. X. Deng, H. Povolny, S. Han, P. Agarwal, “Ultra–lightweight amorphous silicon solar cells deposited on 7.5μm thick stainless steel substrates,” Photovoltaic Specialists Conference, pp. 1050–1052, 2000.
53. K. Sriprapa, P. Sichanugrist, “Amorphous/microcrystalline silicon solar cell fabricated on metal substrate and its pilot production,” Asian Journal on Energy and Environment, Vol. 5, Issues 1, pp. 37–45, 2004.
54. Q. H. Fan, C. Chen, X. Liao, X. Xiang, S. Zhang, W. Ingler, N. Adiga, Z. Hu, X. Cao, W. Du, X. Deng, “High efficiency silicon–germanium thin film solar cells using graded absorber layer,” Solar Energy Materials and Solar Cells, Vol. 94, Issue 7, pp.1300–1302, 2010.
55. W. Wang, H. Povolny, W. Du, X. B. Liao, X. Deng, “Triple–junction a–Si solar cells with heavily doped thin interface layers at the tunnel junctions,” Conference Record, 29th IEEE Photovoltaic Specialists Conference, pp. 1082–1085, 2002.
56. B. Yan, G. Yue, J. M. Owens, J. Yang, S. Guha, “Over 15% efficient hydrogenated amorphous silicon based triple–junction solar cells incorporating nanocrystalline silicon,” Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference, pp. 1477–1480, 2006.
57. R. G. Gordon, “Criteria for choosing transparent conductors,” Material Research Society bulletin, pp. 52–57, 2000.
58. J. Müller, B. Rech, J. Springer, M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Solar Energy, Vol. 77, Issue 6, pp. 917–930, 2004.
59. J. Poortmans, V. Arkhipov, “Thin film solar cells: fabrication, characterization and applications,” Chap. 5, John Wiley & Sons, Ltd, 2006.
60. W. Beyer, J. Hüpkes, H. Stiebig, “Transparent conducting oxide films for thin film silicon photovoltaics,” Thin Solid Films, Vol. 516, Issues 2–4, pp. 147–154, 2007.
61. T. Minami, H. Sato, H. Nanto, S. Takata, “Heat treatment in hydrogen gas and plasma for transparent conducting oxide films such as ZnO, SnO2 and indium tin oxide,” Thin Solid Films, Vol. 176, Issue 2, pp.277–282, 1989,
62. T. Minami, H. Sato, H. Nanto, S. Takata, “Highly conductive and transparent silicon doped zinc oxide thin films prepared by rf magnetron sputtering,” Japanese Journal of Applied Physics, Vol. 25, pp. L776–L779, 1986.
63. G. J. Exarhos, S. K. Sharma, “Influence of processing variables on the structure and properties of ZnO films,” Thin Solid Films, Vol. 270, Issues 1–2, pp. 27–32, 1995.
64. Z. C. Jin, I. Hamberg, C. G. Granqvist, “Optical properties of sputter– deposited ZnO: Al thin films,” Journal of Applied Physics, Vol. 64, Issue 10, pp. 5117– 5130, 1988.
65. K. Tominaga, M. Kataoka, H. Manabe, T. Ueda, I. Mori, “Transparent ZnO:Al films prepared by co–sputtering of ZnO: Al with either a Zn or an Al target,” Thin Solid Films, Vol. 290–291, pp. 84–87, 1996.
66. M.T. Young, S.D. Keun, “Effects of rapid thermal annealing on the morphology and electrical properties of ZnO/In films,” Thin Solid Films, Vol. 410, Issues 1–2, pp. 8–13, 2002.
67. K. E. Lee, M. S. Wang, E. J. Kim, S. H. Hahn, “Structural, electrical and optical properties of sol–gel AZO thin films,” Current Applied Physics, Vol. 9, Issue 3, pp. 683–687, 2009.
68. T. Miyata, Y. Minamino, S. Ida, T. Minami, “Highly transparent and conductive ZnO: Al thin films prepared by vacuum arc plasma evaporation,” Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, Vol. 22, Issue 4, pp.1711–1715, 2004.
69. E. S. Shim, H. S. Kang, J. S. Kang, J. H. Kim, S. Y. Lee, “Effect of the variation of films thickness on the structural and optical properties of ZnO thin films deposition on sapphire substrate using PLD,” Applied Surface Science, Vol. 186, Issues 1–4, pp. 474–476, 2002.
70. S. Faÿ, L. Feitknecht, R. Schlüchter, U. Kroll, E. Vallat-Sauvain, A. Shah, “Rough ZnO layers by LP–CVD process and their Effect in improving performances of amorphous and microcrystalline silicon solar cells,” Solar Energy Materials and Solar Cells, Vol. 90, Issues 18–19, pp. 2960–2967, 2006.
71. Wilson W. Wenas, Akira Yamada, Makoto Konagai, Kiyoshi Takahashi, “Textured ZnO thin films for solar cells grown by metalorganic chemical vapor deposition,” Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, Vol. 30, Issue 3B, pp. 441–443, 1991.
72. O. Kluth, G. Schöpe, J. Hüpkes, C. Agashe, J. Müller, B. Rech, “Modified Thornton model for magnetron sputtered zinc oxide: film structure and etching behavior,” Thin Solid Films, Vol. 442, Issues 1–2, pp. 80–85, 2003.
73. O. Kluth, A. Loffl, S. Wieder, C. Beneking, W. Appenzeller, L. Houben, B. Rech, H. Wagner, S. Hoffmann, R. Waser, J. A. Anna Selvan, H. Keppner, “Texture etched Al–doped ZnO:a new material for enhanced light trapping in thin film solar cells,” Conference Record, 26th IEEE Photovoltaic Specialists Conference, pp.715–718, 1997.
74. J. Morris, R. R. Arya, J. G. ODowd, S. Wiedeman, “Absorption enhancement in hydrogenated amorphous silicon–based solar cells,” Journal of Applied Physics, Vol. 67, Issue 2, pp.1079–1087, 1990.
75. A. Banerjee, S. Guha, “Study of back reflectors for amorphous silicon alloy solar cell application,” Journal of Applied Physics, Vol. 69, Issue 2, pp.1030–1035, 1990.
76.施丞鴻,不鏽鋼基材矽薄膜太陽能電池研製,元智大學機械研究所碩士論文,民國100年。
77.張祐誠,不鏽鋼矽薄膜太陽能電池表面形貌影響研究,元智大學機械研究所碩士論文,民國100年。
78. Shuo-Jen Lee, Jian-Jang Lai, “The effects of electropolishing(EP) process parameters on corrosion resistance of 316L stainless steel,” Journal of Materials Processing Technology, Vol.140, Issues 1–3, pp. 206–210, 2003.
79. J. Meier, U. Kroll, S. Dubail, S. Golay, S. Fay, J. Dubail, A. Shah, “Efficiency enhancement of amorphous silicon p–i–n solar cells by LP–CVD ZnO,” Conference Record, 28th IEEE Photovoltaic Specialists Conference, pp. 746–749, 2000.
80. D. Song, P. Widenborg, W. Chin, A.G. Aberle, “Investigation of lateral parameter variations of Al–doped zinc oxide films prepared on glass substrates by rf magnetron sputtering,” Solar Energy Materials and Solar Cells, Vol. 73, Issue 1, pp. 1-20, 2002.
81. A. Lőffl, S. Wieder, B. Rech, O. Kluth, C. Beneking, H. Wagner, “Al–doped ZnO films for thin–film solar cells with very low sheet resistance and controlled texture,” Proceedings of the 14th European Photovoltaic Solar Energy Conference, pp. 2089–2092, 1997.
82. O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schőpe, C. Beneking, H. Wagner, A. Lőffl, H. W. Schock, “Texture etched ZnO: Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films, Vol. 351, Issues 1–2, pp. 247–253, 1999.
83. J. Kr , M. Zeman, O. Kluth, F. Smole, M. Topi , “Effect of surface roughness of ZnO: Al films on light scattering in hydrogenated amorphous silicon solar cells,” Thin Solid Films, Vol.,426, Issues 1–2, pp. 296–304, 2003.
84. B. Rech, S. Wieder, C. Beneking, A. Loffl, O. Kluth, W. Reetz, H. Wagner, “Texture etched ZnO: Al films as front contact and back reflector in amorphous silicon p–i–n and n–i–p solar cells,” Conference Record, 26th IEEE Photovoltaic Specialists Conference, pp. 619–622, 1997.
85. Jun-Sik Cho, Sanghun Baek, Jeong Chul Lee, “Surface texturing of sputtered ZnO: Al/Ag back reflectors for flexible silicon thin–film solar cells,” Solar Energy Materials and Solar Cells, Vol. 95, Issue 7, pp.1852–1858, 2011.
86. M. Adamik, P. B. Barna, I. Tomov, “Correlation between texture and average grain size in polycrystalline Ag thin films,” Thin Solid Films, Vol. 359, Issue 1, pp. 33–38, 2000.
87. A. Banerjee, J. Yang, K. Hoffman, and S. Guha, “Characteristics of hydrogenated amorphous silicon alloy solar cells on a Lambertian back reflector,” Applied Physics Letters, Vol. 65, Issue 4, pp.472–474, 1994.
88. R. H. Franken, R. L. Stolk, H. Li, C. H. M. van der Werf, J. K. Rath, R. E. I. Schropp, “Understanding light trapping by light scattering textured back electrodes in thin film n–i–p–type silicon solar cells,” Journal of Applied Physics, Vol. 102, Issue 1, 2007.
89. Ke Tao, Dexian Zhang , Linshen Wang, Jingfang Zhao, Hongkun Cai, Yanping Sui, Zaixiang Qiao, Qing He, Yi Zhang, Yun Sun, “Development of textured back reflector for n–i–p flexible silicon thin film solar cells,” Solar Energy Materials and Solar Cells, Vol. 94, Issue 5, pp. 709–714, 2010.
90. Steven S. Hegedus, Xunming Deng, “Analysis of optical enhancement in a–Si n–i–p solar cells using a Detachable back reflector,” Conference Record, 25th IEEE Photovoltaic Specialists Conference, pp. 1061–1064, 1996.
91. J. Hüpkes, J. Müller, B. Rech, “Texture etched ZnO: Al for silicon thin film solar cells, in transparent conductive zinc oxide: basics and applications in thin film solar cells,” edited by K. Ellmer, A. Klein, B. Rech, Springer Series in Materials Science, Vol.104, pp.365, 2008.
92.林志遠,太陽能電池不銹鋼基板光捕捉改善研究,元智大學機械工程研究所碩士論文,民國98年。
93. Shuo-Jen Lee, Shiow-Long Chen, Cheng-Wei Peng, Chih-Yuan Lin, Wen-Cheng Ke, “Enhanced diffuse reflection of light into the air using silver coating on periodically textured 430BA stainless steel substrate,” Materials Chemistry and Physics, Vol.118, Issue 1, pp. 219–222, 2009.
94. Shuo-Jen Lee, Chih-Yuan Lin, Shiow-Long Cheng, Wen-Cheng Ke, “High diffuse reflection of light using a textured 304BA stainless steel substrate,” Materials Chemistry and Physics, Vol. 130, Issues 1–2, pp. 733–737, 2011.
95. F.-J.Haug, T. Söderström, M. Python, V. Terrazzoni-Daudrix, X. Niquille, C. Ballif, “Development of micromorph tandem solar cells on flexible low–cost plastic substrates,” Solar Energy Materials and Solar Cells, Vol. 93, Issues 6-7, pp. 884–887, 2009.
96. M. Kupich, D. Grunsky, P. Kumar, B. Schröder, “Preparation of microcrystalline silicon nip solar cells and amorphous– microcrystalline nipnip tandem solar cells entirely by hot–wire CVD,” Thin Solid Films, Vol. 501, Issues 1–2, pp. 268–271, 2006.
97. J. Yang, A. Banerjee, S. Guha, “Amorphous silicon based photovoltaics—from earth to the ‘‘final frontier’’,” Solar Energy Materials and Solar Cells, Vol. 78, Issue 1–4 pp.597–612, 2003.
98. R. Gavrila, A. Dinescu, D. Mardare, “A power spectral density study of thin films morphology based on AFM profiling,” Romanian Journal of Information Science and Technology, Vol. 10, Number 3, pp. 291–300, 2007.
99. ASTM Subcommittee D20.40, D1003-11e1 “Standard test method for haze and luminous transmittance of transparent plastics,” Annual Book of ASTM Standards, Vol. 08.01, 2011.
100. M. L. Addonizio, A. Antonaia, “Surface morphology and light scattering properties of plasma etched ZnO: B films grown by LP–MOCVD for silicon thin film solar cells,” Thin Solid Films, Vol. 518, Issue 4, pp. 1026–1031, 2009.
101. A. Krasnov, “Light scattering by textured transparent electrodes for thin–film silicon solar cells,” Solar Energy Materials and Solar Cells, Vol. 94, Issue 10, Pages 1648–1657, 2010.
102. J. Escarré, F. Villar, J.M. Asensi, J. Bertomeu, J. Andreu, “Spectral analysis of the angular distribution function of back reflectors for thin film silicon solar cells,” Journal of Non-Crystalline Solids, Vol. 352, Issue 9–20, pp. 1896–1899, 2006.
103. Metals Handbook, Vol. 1: “Properties & Selection: Irons, Steels, and High-Performance Alloys,” ASM, 10th edition, p.848, 1990.
104. ASTM Subcommittee A01.17, A240/A240M–12 “Standard specification for chromium and chromium-nickel stainless steel plate, sheet, and strip for pressure vessels and for general applications,” Annual Book of ASTM Standards, Vol. 01.03, 2012.
105. W. R. Grove, “On the electro–chemical polarity of gases,” Philosophical Transactions of the Royal, Vol. 142, pp. 87–101, 1852.
106. ASTM Subcommittee E44.09, E927–10 “Standard specification for solar simulation for terrestrial photovoltaic testing,” Annual Book of ASTM Standards, Vol. 12.02, 2010.
107. IEC 61646, “Thin film terrestrial photovoltaic(PV) modules – Design qualification and type approval,” edition 2.0, 2008–05.
108. ASTM Subcommittee D01.23, D3359–09e2 “Standard test methods for measuring adhesion by tape test,” Annual Book of ASTM Standards, Vol. 06.01, 2009.
109. Shuo-Jen Lee, Yi-Ho Chen, Jung-Chou Hung, “The Investigation of Surface Morphology Forming Mechanisms in Electropolishing Process,” International Journal of Electrochemical Science, Vol. 7, Issue 12, pp. 12495–12506, 2012.
110. Lee, Shuo-Jen; Chen, Yi-Ho; Poon, Tai-Lun; Chang, Yu-Cheng, Micro-Patterning on Stainless Steel 304 by Electro Chemical Machining Method, Advanced Science Letters, Vol. 8, pp. 77–82, 2012.
111. Shuo-Jen Lee, Yu-Ming Lee, Ming-Yu Chung, “Metal removal rate of the electrochemical mechanical polishing technology for stainless steel-the electrochemical characteristics,” Journal of Electroinc Materials, Vol. 220, Issue 4, pp.525–530, 2006.
112. Shuo-Jen Lee, Jing-Jang Lai, Ming-Feng Du, “The polishing mechanism of electrochemical mechanical polishing technology,” Journal of Materials Processing Technology, Vol. 140, Issues 1–3, pp. 280–286, 2003.
113. Yuan-Long Chen, Shu-Min Zhu, Shuo-Jen Lee, Jong C Wang, “The technology combined electrochemical mechanical polishing, Journal of Materials Processing Technology, Vol. 140, Issue 1–3, pp. 203–205, 2003.
114. S. Vepřek and V. Mareček, “The preparation of thin films of Ge and Si by chemical hydrogen plasma transport,” Solid-State Electronics, Vol. 11, Issue 7, pp. 683–684, 1968.
115. S. Usui, M. Kikuchi, “Properties of heavily doped Gd–Si with low resistivity,” Journal of Non–Crystalline Solids, Vol. 34, Issue 1, pp. 1–11, 1979.
116. M. Faraji, Gokhale Sunil, S. M. Choudhari, M. G.Takwale, S. V. Ghaisas, “High mobility hydrogenated and oxygenated microcrystalline silicon as a photosensitive material in photovoltaic applications,” Applied Physics Letters, Vol.60, Issue 26, pp. 3289– 3291, 1992.
117. J. Meier, P. Torres, R. Platz,, S. Dubail, U. Kroll, J. A. Selvan, N. Pellaton Vaucher, Ch. Hof, D. Fischer, H. Keppner, “On the way towards high efficiency thin film silicon solar cells by the 'micromorph' concept,” Proceedings of the Symposium, Amorphous silicon technology, pp. 3–14, 1996.
118. J. Meier, R. Flückiger, H. Keppner, A. Shah, “Complete microcrystalline p–i–n solar cell—Crystalline or amorphous cell behavior?,” Applied Physics Letters, Vol. 65, Issue 7, pp. 860– 862, 1994.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王曼溪(1999)預防勝於治療:談壓瘡護理。榮總護理。16:88-94。
2. 于博芮、戴玉慈(1999)壓瘡預防--減壓床墊之比較與護理應用。護理雜誌 46:33-9。
3. 李瑞婷、楊麗秋、林秋子、唐婉如(2006)頭頸部腫瘤病人術後發生壓瘡之相關因素探討。腫瘤護理雜誌。6:31-41。
4. 吳紹枝、陳志宏、徐千剛、黃永勝(2006)ω3及ω6脂肪酸補充品對經痛的影響。健康管理學刊。4:201 -212。
5. 邱淑惠、王玉霞、吳重慶、吳玫錚、李昭瑢、戴怡玲、黃梅菊(2002)住院病患壓瘡發生實況分析。秀傳醫學雜誌。3:77-81。
6. 邱飄逸、郭素娥(1999)認識類固醇的治療與護理。護理雜誌。46:73 -80。
7. 張昭惠、陳惠玲、陳香祺(2007)降低神經外科手術患者壓瘡發生率之方案。護理雜誌。54: 53 -60。
8. 陳真慧、鄭玉玲、陳雅紅、洪彩雲、李華蘭、陶耀華(2007)降低加護病房病患壓瘡發生率之改善方案。源遠護理。1:34-47。
9. 陳都美(1998)住院病患壓瘡盛行率及其相關因素之探討。榮總護理。15: 42-49。
10. 陳瀅淳、邱艷芬、于博芮(2001)壓瘡傷口照護的認知與行為。醫學教育。5:40-52。
11. 陳永琇、徐善慧(2006)傷口敷料與幾丁聚醣。化工。53:21-28。
12. 許雪貞;莊素完;李順倫(2006)提升某加護中心壓瘡癒合率之專案。護理雜誌。53:44-51。
13. 黃金蓮(1993)某教學醫院住院病人發生壓瘡之相關因素探討。護理雜誌。40:47-55。
14. 黃麗華、陳瓊瑤、李秋香、林玉茹(2010)降低某內科病房壓瘡發生率。中山醫學雜誌。21:309 -322。
15. 趙莉芬、劉雪娥(1994)認識壓瘡及其相關危險因子。護理雜誌。 41:59-64。