跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/16 18:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱繼億
研究生(外文):CHI-I CHIU
論文名稱:高功率LED燈具之散熱研究
論文名稱(外文):A Study for the Heat Dissipation of the High Power LED Lamps
指導教授:陳永樹陳永樹引用關係
指導教授(外文):Yeong-Shu Chen
口試委員:林育才黃德言
口試委員(外文):Yu-Cai LinTe-Yen Huang
口試日期:2013-06-27
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:95
中文關鍵詞:散熱高功率LED燈具
外文關鍵詞:Heat DissipationHigh Power LEDLamps
相關次數:
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
市面上的LED燈具,為避免在長時間點亮情況下熱能量累積,使得溫度過高而損壞LED晶片,照成光衰,所以在PCB基板下通常會加裝散熱機構,藉由導熱介質與燈板下的散熱金屬材料,以減少溫度上升。而散熱機構之設計,影響整體散熱效果甚鉅,本研究利用實驗方式,把現行市面上LED燈具上的散熱問題加以分析,探討如何使高功率的LED燈具達到最大散熱效能。
研究首先探討鰭片間距最佳化的影響因素為何?在實驗部份,先建立數值模型後進行樣品製作,量測出鰭片多寡對PCB基板溫度上升之影響。運用同面積,不同導熱材質的散熱PCB基板,量測出不同材質散熱PCB基板的溫升影響。此外,進行模組之不同螺絲鎖附壓力,量測PCB基板之溫度上升。並利用熱傳導公式,算出LED晶片的溫度,以確保LED燈具在長時間點亮不會造成光衰。並以溫度紀錄儀器,依照安規規範進行點亮實驗,以驗證所探討的影響因素,其散熱結果是否符合規範?
最後經由實驗結果與在LED燈具業界的經驗,把市面上所有的LED燈具之散熱問題做一個整合,結果可以發現鰭片面積大並不代表散熱佳、陶瓷基板為高功率之燈具最佳選擇、螺絲鎖附的正向壓力確實對整體散熱有影響,這些都是對LED燈具有極大的影響,相關研究結果對LED燈具散熱設計應有所助益。
ABSTRACT
The overheat problem for those LED lamps will either damage the LED chips or cause the downgrade of the light intensity. The cooling mechanism consists of a metal fin or similar heat dissipation devices in contact with the PCB circuit board to lower the temperature. This study conducted a series of experiments by taking various LED lamps on the current market for examining the heat dissipation problem s. It is aimed to explore the relating methods or parameters that can have the best performance in the heat reduction effects for high-power LED lamps.
Firstly, factors for the optimum fin spacing to reduce the temperature on the LED surface are studied. By building the numerical simulation models followed by the making of the prototype, various fin numbers on the LED circuit board temperature reduction were tested. Also, the use of different materials of the PCB substrate on the increase of temperature, and the tightening pressure of the screws on the LED light plate were tested as well. Based on the theory of heat conduction, temperature of the LED chip is checked for avoiding the light intensity downgrading during the long term use of the LED. All these tests come with a continuous temperature recording following UL safety regulations to make sure all the studied factors on the heat reduction still comply with the regulations.
Finally, through all the experimental results and experiences in the LED lighting industry, the study integrated all the heat problems of the current LED lighting products on the market. It is concluded that with larger cooling fin area does not necessary to result in good heat dissipations. And the ceramic substrates are the best choice for high power lamps applications. Besides, the screws that generate the pressure in normal direction have apparent effects on the overall heat dissipation. All these findings are essential factors for the LED lamp applications. The corresponding results are believed to be beneficial in the cooling design of LED lamps.
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 v
表目錄 viii
符號說明 ix
第一章 緒論 1
1.1 前言 1
1.2 研究目的 2
1.3 文獻回顧 3
1.4 研究架構 5
第二章 LED燈介紹 6
2.1 LED燈的優缺點 6
2.2 LED的照明運用 7
2.3 LED照明與傳統照明比較 9
2.4 LED燈具之散熱結構介紹 11
2.5 全球白熾燈禁用時間表 15
2.6 全球各種LED燈具介紹與通用燈頭分類表 17
2.7 LED燈具之溫度量測規範 25
第三章 解決高功率LED燈具之散熱方法 27
3.1 鰭片間距探討 27
3.2 運用不同材質之LED散熱PCB基板 36
3.3 螺絲鎖附的壓力對熱傳導的影響 41
第四章 實驗設備與方法 55
4.1 實驗設備 55
4.2 實驗步驟 59
第五章 實驗結果與分析 74
5.1 實驗數據 74
5.2 實驗結果分析 83
第六章 結論與未來展望 90
6.1 結論 90
6.2 未來展望 93
參考文獻 94
1. Kurt Antony Levens, “Lighting a Building with a single Bulb toward a System For Illumination In the 21st C, ” Massachusetts Institute of Technology, pp.27- 40, 1997.
2. D. Q. Kern and A. D. Kraus , “Extended Surface Heat Transfer, ” McGraw-Hill, New York, 1972.
3. A. D. Kraus , “Sixty-five years of extended surface technolog , Applied Mechanics Review, ”Vol .41, pp.321-364, 1988.
4. A. Aziz, “Optimum Dimensions of Extended surfaces operating in a convective environment, ” Applied Mechanics Review, Vol.45, pp.155-173, 1992.
5. 鄭皓元, 「已知縱長型散熱座的鰭片數目、深度與寬度時,求鰭片的最佳厚度」, 大同大學機械工程研究所碩士論文, 2009。
6. S. W. Churchill and H.S.Chu, “Correlating equations for laminar and turbulent free convection from a vertical plate, ”Int.J.Heat Mass Transf, Vol.18, pp.1323 -1329, 1975.
7. Arthur Hugues Ball, “Thermal and Electrical Considerations for the Design of Highly-Integrated Point-of-Load Converters, ”Blacksburg, Virginia, 2008.
8. 林柏君, 「LED陶瓷基板之熱模擬與分析, ”國立臺北科技大學材料及資源工程系研究所碩士論文」, 2010。
9. R. E. Simons, “Estimating Parallel Plate-Fin Heat Sink Pressure Drop, ” Electronics Cooling, Vol. 9, No. 2, pp. 8–10, 2003.
10. W. Elenbaas, “Heat Dissipation of Parallel Plates by Free Convection, ”Physica, Fundamentals of Heat Mass Transfer, ed., John Wiley & Sons,New York, Vol. 9, No. 1, pp. 1-28, 2002.
11. R. RAUTIOAHO, “Thermal fatigue and metallurgical in solder joint of LTCC modules, ”Microelectronic Reliability, Vol.40, pp.1527-1532, 1997.
12. K.. I. MORI, “Prediction of fracture in sintering of ceramic powder Compact, ” Int J Mach Tool Manufact, Vol.37, pp. 1327-1336 1997.
13. J. H. Jean and C. R. Chang, “Camber development during cofiring Ag-based low-dielectric-constant ceramic package, ” J. Mater Res., 12[1]2743-50, 1997.
14. J. H. Jean and C. R. Chang, “Cofiring Kinetics and Mechanisms of an Ag-Metallized Ceramic-filled Glass Electronic Package, ” J. Am. Ceram. Soc., 80[12]3084-92, 1997.
15. J. H. Jean, C. R. Chang and Z. C. Chen, “Effect of Densification Mismatch on Camber Development during Cofiring Ni-Based Multilayer Ceramic Capacitors,
” J. Am. Ceram. Soc., 80 [9], pp.2401-2406, 1997.
16. T. Cheng and R. Raj, “Flaw Generation during Constrained Sintering of Metal-Ceramic and Metal-Glass Multilayer Films, ” J. Am. Ceram. Soc., 72 [9] 1649-55, 1989.
17. K. WEIDE, “Impact of FEM Simulation on Reliability Impovement Of
Packaging, ”Microelectronic Reliability, Vol.39, pp.1079-1088, 1999.
18. J. Jakovenko, “Design and simulation of micromechanical thermal converter
for RF power sensor microsystem, ”Microelectronic Reliability, Vol.44, pp. 141-184, 2004.
19. T. A. Collings, D. L. Mead and D. E. W. Stone, “The Effects of High Temperature Excursions on Environmental Exposed CFC, ” RAE Technical Report, TR 85074 (Royal Aircraft establishment, Farnborough, UK), 1985.
20. K. W. Wu, C. L. Lee, Y. C. Chang and C. L. Ong, “Compressive Strength of Delaminated and Repaired Composite Plates, ” Materials Chemistry and Physics Vol. 43, pp. 173-177, 1996.
21. S. Narayanan and S. Linda Schadler, “Assessment of Strain along Fiber Surface Features in Graphite Epoxy Composites Loaded in Compression, ” Composites Science and Technology, Vol. 59, pp. 1589-1596, 1999.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top