(3.231.29.122) 您好!臺灣時間:2021/02/25 22:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:羅振哲
研究生(外文):Chen-Che Lo
論文名稱:Ni/CNT觸媒之電化學特性研究
論文名稱(外文):Study on Ni / CNT catalysts Electrochemical Characteristics
指導教授:江右君江右君引用關係
指導教授(外文):Yu-Chun Chiang
口試委員:王竹方鐘國濱
口試委員(外文):Jhu-Fang WangGuo-Bin Jhong
口試日期:2013-07-24
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:56
中文關鍵詞:奈米碳管觸媒特性分析含浸法
外文關鍵詞:carbon nanotubescatalystimpregnation methodcharacterization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:15
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前已知Pt為燃料電池活性最佳的觸媒,在氧化還原能力上優於其他金屬。然而Pt的價格昂貴,且稀有。所以致力於尋找代替方案,成為最主要的目的。而鹼性燃料電池使用KOH溶液為電解質,由於氧氣在鹼性溶液中的活性大在酸性溶液中,所以基本上可以使用非貴金屬如銀、鎳等作為電極材料,觸媒種類多且價格便宜。
本研究利用含浸法(Impregnation method),利用檸檬酸氧化奈米碳管,接著在氧化碳管的表面沈積奈米Ni粒子(20wt. %)。使用材料檢測技術進行特性分析,並利用線性掃描伏安法分析樣本的電化學特性。最後評估觸媒的燃料電池效能,並與Pt/C觸媒比較。期能不使用Pt觸媒,而又不錯的活性和穩定性。
研究結果發現觸媒表面合成出的Ni奈米粒子,顆粒大小約莫10~20nm。之後再做電化學分析時,透過線性掃描伏安法(linear sweep voltammetry,LSV)測量Ni奈米碳管與商用Pt/C的效果之比較。
研究結果發現觸媒表面合成出均勻分散之奈米Ni粒子,顆粒大小< 20 nm。平均Pt 顆粒約在15~16 nm 之間,標準偏差約2.48 nm~3.2 nm。透過XPS分析我們發現基材處理方式不同所得的官能基含量也不同。Ni/CNT觸媒樣本之LSV線性掃描電流曲線平均-1.53 mA,與商用樣本Pt/C (Johnson Matthey)平均電流-3.19 mA相比,仍有一些差距。
Pt is the currently known best catalytic activity of the fuel cell, the oxidation reducing capability than other metals. However, Pt is expensive and rare. So committed to finding alternative plans, as the main purpose. The alkaline fuel cell using KOH solution as the electrolyte, the oxygen activity in the alkaline solution in an acidic solution large, so basically use a non-noble metal such as silver, nickel and the like as an electrode material, catalyst and inexpensive variety.
In this study, using Impregnation Method, the use of citric acid oxidized carbon nanotubes, followed by carbon dioxide tube surface deposition nano Ni particles (20wt.%). Detection techniques using conducting materials characterization, and linear sweep voltammetry using electrochemical characteristics of the sample analyzed. Final evaluation of the fuel cell catalyst performance, and with the Pt / C catalyst comparison. Period can not use Pt catalyst, but good activity and stability.
The results showed that the surface of the synthesized Ni catalyst nanoparticles, particles size of approximately 10 ~ 20nm. Do after electrochemical analysis by linear sweep measurement Ni nanotubes with commercial Pt / C Comparison of the effect.
The results showed that the surface of the catalyst synthesized uniform dispersion of nano Ni particles, particles size <20 nm. The average Pt particles of about 15 ~ 16 nm between the standard deviation of about 2.48 nm ~ 3.2 nm. Through XPS analysis we found that treatment of different substrates resulting functional group content is also different. Ni / CNT catalyst samples LSV linear scan current curve Average -1.53 mA, with commercial samples of Pt / C (Johnson Matthey) compared to -3.19 mA average current, there are still some gaps.
書名頁 i
論文口試委員審定書…………………………………………………………………ii
授權書………………………………………………………………………………...iii
中文摘要……………………………………………………………………………...iv
英文摘要……………………………………………………………………………...vi
誌謝…………………………………………………………………………………..vii
目錄………………………………………………………………………………….viii
表目錄……………………………………………………………………………….xiii
圖目錄……………………………………………………………………………….xiv
第一章 前言 1
1.1研究緣起 1
1-2 研究目的 2
1-3研究內容 3
第二章 文獻回顧 4
2-1燃料電池 4
2-1-1陰離子交換膜燃料電池 5
2-2 電化學活性分析 6
2-2-1 線性掃描伏安法(linear sweep voltammetry,LSV) 6
2-2-2循環伏安法(Cyclic voltammetry, CV) 7
2-3觸媒 8
2-3-1陰極觸媒 9
2-3-2鎳觸媒 9
2-3-3 鎳觸媒合成法 10
2-4奈米碳管 11
2-4-1奈米碳管表面改質 12
第三章 研究方法 14
3-1 研究流程與規劃 14
3-2 Ni/CNT觸媒之製備 15
3-2-1 檸檬酸氧化奈米碳管 15
3-2-2 胺化奈米碳管 16
3-2-2 Ni/CNT合成 17
3-3特性分析 18
3-3-1高解析穿透式電子顯微技術(HRTEM) 18
3-3-2熱重分析(TGA) 18
3-3-3 X-ray繞射分析(XRD) 18
3-3-4 X光電子能譜 (XPS) 19
3-3-5 線性掃描伏安法(linear sweep voltammetry,LSV) 19
3-3-5-1 樣本製備 20
3-3-5-2實驗操作流程 22
第四章 結果與討論 24
4-1觸媒材料特性分析 24
4-1-1高解析穿透式電子顯微 (HRTEM) 影像 24
4-1-2熱重分析 (TGA) 29
4-1-3 X-ray繞射 (XRD)分析 32
4-1-4 X-ray光電子能譜(XPS)分析 32
4-2線性掃描伏安法分析 46
第五章結論與建議 45
5-1結論 49
5-2 建議 49
參考文獻 50
Prehn, K., Warburg, A., Schilling, T., Bron, M. and Schulte, K. "Towards nitrogen-containing CNTs for fuel cell electrodes" Composites Science and Technology, 69:1570–1579,2009

Tessonnier, J, P., Ersen, O., Weinberg, G., Cuong, P, H., Su, D,S., ,and
Robert. S, G. “Selective Deposition of MetalNanoparticles Inside or Outside
Multiwalled Carbon Nanotubes” Acsnano,Vol:3 :2081-2089, 2009

Valenzuela,M, A., Alonso-Nun˜ ez b, G., Miki-Yoshida a, M.,
Botte c, G and G Verde-Go´mez d,*Y.” High electroactivity performance in Pt/MWCNT and PtNi/MWCNT electrocatalysts” hydrogen energy, XXX:
1-8,2012

Wu, H., Wexler, D and Wang ,G.” PtxNi alloy nanoparticles as cathode catalyst for PEM fuel cells with enhanced catalytic activity” Alloys and Compounds, 488:195-198,2009

Qian, J., Luhua, J., Suli, W., Jing, Q and Gongquan S.” A highly active PtNi/C electrocatalyst for methanol electro-oxidation in alkaline media” Catalysis Communications,12:67-70,2010

Qian. J and Jiang, L “A highly active PtNi/C electrocatalyst for methanol electro-oxidation in alkaline media”, Catalysis Communications, Vol. 12, pp. 67-70 (2010)

Wu, S, H and Chen, D, H. “Preparation and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol”, Jounal of Colloid and Interface Science, Vol. 259, pp. 282-286 (2003).

Watanabe, M., Uchida, M and Motoo,S. “Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol”, Journal of Electroanalytical Chemistry, Vol. 229, pp. 395-406 (1987)

Hsieh, C,T., Chou, Y, W and Lin,J Y.” Fabrication and electrochemical activity of Ni-attached carbon nanotube electrodes for hydrogen storage in alkali electrolyte” Hydrogen Energy, 32:3457-3464,2007

Randhir, P, D., Nathan, S, L and Wang, J.” Electrochemical detection of amino acids at carbon nanotube and nickel–carbon nanotube modified electrodes” Analyst,17 :2004.

Huo, S., Deng, H., Chang, Y and Jiao,K.” Water management in alkaline anion exchange membrane fuel cell anode” Hydrogen Energy,37:2012

Bard, A. J., and Faulkner, L, R. "Electrochemical methods: principles and applications." Electrochemical Methods: Principles and Applications (2001).

Schmidt, T. J. "Characterization of High‐Surface‐Area Electrocatalysts Using a Rotating Disk Electrode Configuration." Journal of The Electrochemical Society 145.7 (1998): 2354-2358.

Zhao, Y., Yu, H., Yang, D., Li, J., Shao, Z and Yi, B.” High-performance alkaline fuel cells using crosslinked composite anion exchange membrane” Power Sources,221:2013

Jafri, R. I., and Ramaprabhu, S., “Multi walled carbon nanotubes based micro direct ethanol fuel cell using printed circuit board technology”, International Journal of Hydrogen Energy 35, 1339-1346, 2010.

Jiang, Q. L., Peng, Z. D., Xie, X. F., Du, K., Hu, G. R., and Liu, Y. X., “Preparation of high active Pt/C cathode electrocatalyst for direct methanol fuel cell by citrate-stabilized method”, Transactions of Nonferrous Metals Society of China (English Edition) 21, 127-132, 2011.

Seo, D, W., Lim, Y, D., Hossain, M, A., Lee, S, H., Lee , H, C.,Jang, H. H., Choi, S, Y and Kim, W, G.” Anion conductive poly(tetraphenyl phthalazine ether sulfone) containing tetra quaternary ammonium hydroxide for alkaline fuel cell application”Hydrogen Energy,38,579-587,2011.

Duteanu, N. “A parametric study of a platinum ruthenium anode in a direct borohydride fuel cell”, J Appl Electrochem, Vol. 37, pp. 1085–1091 (2004).

Zhang, F., Zhang, H., Qu, C and Ren, J.” Poly(vinylidene fluoride) based anion conductive ionomer as a catalyst binder for application in anion exchange membrane fuel cell”Power Source,196,3099-3103,2011.

Fraser, S, D., Hacker, V and Kordesch.” FUEL CELLS – ALKALINE FUEL CELLS | Cells and Stacks”Power Source,344-352,2009.

Poh, C. K., Lim, S. H., Pan, H., Lin, J. and Lee, J, Y., “Citric acid functionalized carbon materials for fuel cell applications”, Power Sources, 176,70–75, 2008.

Ralph, T, R., and Hogarth, M, P. “Catalysis for low temperature fuel cells”, Platinum Metals Review, 46, 3-14, 2002.

Dam, H, E and Bekkum, H, V.”Preparation of Platium of Activated Carbon”
,Catalysis,131,335,1991

Merle, G., Wessling, M and Nijmeijer, K.” Anion exchange membranes for alkaline fuel cells: A review”Membrance Science,377,1-35,2011

Liu, H., Cheng, G.,Zheng, R., Zhao, Y and Liang, C.” Influence of synthesis process on preparation and properties of Ni/CNT catalyst”Diamond & Related Materials,15,15-21,2006.

Li, H., Zhao, N., He, C., Shi, C.,Du, X and Li, J.” Fabrication and growth mechanism of Ni-filled carbon nanotubes by the catalytic method”Alloys and Compounds,465,51-55,2008.

Zignani, S, C., Antolini, E and Gonzalez, E, R.” Stability of Pt–Ni/C (1:1) and Pt/C electrocatalysts as cathode materials for polymer electrolyte fuel cells: Effect of ageing tests” Power Sources,191,344-350,2009.

Bak, S, M., Kim, K, H., Lee, C, W and Kim, K, B.” Mesoporous nickel/carbon nanotube hybrid material prepared by electroless deposition” Materials Chemistry,21,1984-1990,2011.

Maiyalagan,T and Scott, K.” Performance of carbon nanofiber supported Pd–Ni catalysts for electro-oxidation of ethanol in alkaline medium” Power Sources,195,5246-5251,2010.

Chen, Z., Higgins, D and Chen, Z.” Nitrogen doped carbon nanotubes and their impact on the oxygen reduction reaction in fuel cells” CARBON,48,3057-3065,2010.

Chen, Z., Higgins, D and Chen, Z..” Electrocatalytic activity of nitrogen doped carbon nanotubes with different morphologies for oxygen reduction reaction” Electrochimica Acta,55,4799-4804,2010.

Gallegoa, J., Barraultb, J., Batiot-Dupeyratb,G and Mondragona,F” Intershell spacing changes in MWCNT induced by metal–CNT interactions” Micron,44,463-467,2013

Guo, J. W., Zhao, T. S., Prabhuram, J., and Wong, C. W. “Preparation and the physical/electrochemical properties of a Pt/C nanocatalyst stabilized by citric acid for polymer electrolyte fuel cells”, Electrochimica Acta 50, 1973-1983, 2005.

Carton, J, G and Olabi, A, G.” Design of experiment study of the parameters that affect performance of three flow plate configurations of a proton exchange membrane fuel cell” Energy,35,2796-2806,2010

Pintea,S., Rednic,V., rgineana,R., Aldea,N.,Tiandou,H., Wub,Z., Neumannc,M and Matei,F.” Crystalline and electronic structure of Ni nanoclusters supported on Al2O3 and Cr2O3 investigated by XRD, XAS and XPS methods” Superlattices and Microstructures,46,130-136,2009

Vivek, M, R., Carlos, H, C., Jessika, R and AhlamJ,A” Synthesis of nickel nanoparticles on multi-walled carbon nanotubes by gamma irradiation” Radiation PhysicsandChemistry,89,51-56,2013.

Xiong, C., Wei, Z., Hu, B., Chen, S., Li, L., Guo,L., Ding,W., Liu, X., Ji, W and Wang,X” Nitrogen-doped carbon nanotubes as catalysts for oxygen reduction reaction” Power Sources,215,216-220,2012.

黃鎮江編著, 燃料電池(修訂版), 全華 (2004)

徐以玲,水中銅,鎘重金屬離子於奈米碳管上之吸附研究,2006
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔