跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/10 16:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳秉勳
研究生(外文):Bing-Shiun Wu
論文名稱:利用SIFT 特徵點開發以QR Code 為基礎之擴增實境系統
論文名稱(外文):Developing QR Code based Augmented Reality Using SIFT Features
指導教授:鄧進宏鄧進宏引用關係
指導教授(外文):Chin-Hung Teng
口試委員:陳志洪王照明
口試委員(外文):Chih-Hung ChenChao-Ming
口試日期:2013-07-25
學位類別:碩士
校院名稱:元智大學
系所名稱:資訊傳播學系
學門:傳播學門
學類:一般大眾傳播學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:80
中文關鍵詞:擴增實境QR CodeSIFTGPUHomography
外文關鍵詞:QR CodeSIFTGPUHomographyAugmented Reality
相關次數:
  • 被引用被引用:0
  • 點閱點閱:452
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
擴增實境是一種將3D虛擬資訊附加在現實環境中的一項技術,發展起初,因
其繁雜的設備而大大限制此技術之實用性,但是隨著現今科技的發展,這些設備
上的需求已經不再擴增實境技術發展的絆腳石,我們可以透過簡單的行動裝置即
可在日常生活中使用這項技術各種應用。擴增實境技術在各方面的相關研究成果
也越來越令人驚艷,在商業、教育、醫療、娛樂等都有其應用,然而目前在市面
上的擴增實境系統大多數是使用傳統標記式的系統架構,其最大的缺點在於標記
的使用有限制,使用者無法自行定義標籤用途與內容,需透過一道預先在系統中
註冊的手續後才可使用新的標記,導致整體系統趨於封閉,而難以有更多創新的
發展。
在本篇論文中,我們使用了QR Code這種二維條碼來實現以QR Code為基礎的
擴增實境系統。在本系統中,QR Code取代了傳統的擴增實境標記,QR Code可以
不需要透過任何在系統中的預先註冊手續即可使用。這意味著本系統可以透過使
用QR Code這項已經被廣泛接受並使用的二維條碼,令系統本身可以更方便的在公
開領域的場合中使用。使用者可以不需要透過在系統中註冊,即可自行做出專屬
ii
於他們自己的條碼。然而由於各個QR Code都不盡相同,因此我們需要一個有效率
的追蹤方式對QR Code這種二維條碼進行追蹤。在本文中,我們使用了SIFT特徵點
來實現QR Code的追蹤,並增進了追蹤的準確度與穩定度。經由實驗證實,我們所
開發出來這項以QR Code為基礎的擴增實境系統確實能取代傳統擴增實境標記,同
時,其系統穩定度也較之前的系統更佳。QR Code可以確實並有效率地被追蹤,且
其穩定度也相當令人滿意。
Augmented reality (AR) is a technology capable of superimposing virtual objects
into real scene images so that the user has the illusion that the virtual objects are part of
the real scene. As the advance of technologies, many research outcomes in AR are
amazing and now AR can find extensive applications in business, education, medication,
and entertainment. However, currently many AR systems are still based on marker
tracking which has many limitations in physical applications. For example, the marker
needs to be registered in the system before use and this registration procedure will limit
the AR system in public domain applications. In view of this, in this thesis we employ
the widely used 2D barcode, the QR Code, to implement a QR Code based augmented
reality (AR) system. In this system, QR Code is used to replace the traditional AR
marker and the code can be tracked by the system without any maker registration
procedure. By this system, users can generate their codes and do not need to register the
codes into the system. However, since every QR Code is different, to track the codes in
a universal way a robust tracking technique needs to be applied. In this study, we use
the SIFT feature to enable QR Code tracking and also improve tracking accuracy and
iv
stability. From a series experiments, the results showed that the developed system is
more stability and achieve high tracking accuracy compared with a published QR code
tracking technique.
書頁名
口試委員審定書
授權書
摘要 i
英文摘要 iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 ix
一、緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
二、文獻探討 5
2.1 擴增實境 5
2.1.1 擴增實境的演進 5
2.1.2 擴增實境之相關函式庫 6
2.1.3 擴增實境的追蹤定位技術 7
2.2 QR Code的發展 14
2.2.1 QR Code的外觀 15
2.2.2 QR Code之應用範圍 17
2.3 相關研究 20
三、SIFT與Homography 23
3.1 SIFT起源與特性 23
3.2 SIFT運作步驟 24
3.3 SIFT演算法之相關研究與改良 29
3.4 RANSAC與LMedS 31
3.5 Homography 34
四、以QR Code為基礎的擴增實境系統 36
4.1 系統架構 36
4.2 系統流程 37
4.3 QR Code的旋轉與校正 40
4.4 相機方位估算 43
五、系統評估 45
5.1 比較方法 45
5.2 實驗 49
5.3 QR Code偵測之強韌度比較 70
5.4 評估結論 71
六、結論與未來展望 72
參考文獻 74
[1] J. Carmigniani and B. Furht, "Augmented reality: an overview", Handbook of Augmented Reality, Chapter 1, pp. 3-46, 2011.
[2] C.B.Owen, X.Fan, P.Middlin, "What is the best fiducial? ," The First IEEE International Workshop Augmented Reality Toolkit, 2002.
[3] H. Kato and K. T. Tan, "Pervasive 2D barcodes for camera phone applications," Pervasive Computing, Vol. 6, No. 4, pp. 76-85, October 2007.
[4] I. Sutherland, "A head-mounted three-dimensional display," AFIPS Fall Joint Computer Conference, pp. 757-764, Washington, DC, 1968.
[5] Haller, M., Billinghurst, M., and Thomas, B., "Emerging Technologies of Augmented Reality Interfaces and Design," Idea Group Publishing, USA, Chap.13, pp. 262, 2006.
[6] P. Milgram, H. Takemura, A. Utsumi , F. Kishino, “Augmented Reality: A class of displays on the reality-virtuality continuum” , SPIE Vol. 2351, Telemanipulator and Telepresence Technologies., 1994.
[7] R. Azuma, "A Survey of Augmented Reality", Presence-Teleoperators and Virtual Environments, vol. 6, no. 4, pp. 355-385, 1997.
[8] Y.-B. Li, S.-P. Kang, Z.-H. Qiao, and Q. Zhu, “Development actuality and application of registration technology in augmented reality,” International Symposium on Computational Intelligence and Design, pp. 69-74, 2008.
[9] V. Lepetit and P. Fua, “Monocular model-based 3D tracking of rigid objects: a survey,” Foundations and Trends in Computer Graphics and Vision, Vol. 1, No. 1, pp. 1-89, 2005.

[10] W. A. Hoff, K. Nguyen, and T. Lyon, “Computer vision-based registration techniques for augmented reality,” Intelligent Robots and Control Systems XV, Intelligent Control Systems and Advanced Manufacturing, pp. 538–548, November 1996.
[11] A. State, G. Hirota, D. Chen, W. Garett, and M. Livingston, “Superior augmented reality registration by integrating landmark tracking and magnetic tracking,” Computer Graphics, SIGGRAPH Proceedings, pp. 429–438, July, 1996.
[12] Y. Cho, W. Lee, and U. Neumann, “A multi-ring color fiducial system and intensity-invariant detection method for scalable fiducial-tracking augmented reality,” International Workshop on Augmented Reality, 1998.
[13] H. Kato and M. Billinghurst, “Marker racking and HMD Calibration for a video-based augmented reality conferencing system,” IEEE and ACM International Workshop on Augmented Reality, October 1999.
[14] H. Kato, M. Billinghurst, I. Poupyrev, K. Imamoto, and K. Tachibana, “Virtual object manipulation on a table-top AR environment,” International Symposium on Augmented Reality, pp. 111–119, 2000.
[15] D. Koller, G. Klinker, E. Rose, D. Breen, R. Whitaker, and M. Tuceryan, Real-time vision-based camera tracking for augmented reality applications,” ACM Symposium on Virtual Reality Software and Technology (Lausanne, Switzerland), pp. 87–94, September 1997.
[16] J. Rekimoto, “Matrix: A realtime object identification and registration method for augmented reality,” Asia Pacific Computer Human Interaction, 1998.
[17] V. Teichrieb, J. P. S. d. M. Lima, and E. L. Apolinario, “A survey of online monocular markerless augmented reality,” International Journal of Modeling and Simulation for the Petroleum Industry, Vol. 1, No. 1, pp. 1-7, 2007.
[18] C. Harris, Tracking with Rigid Objects. MIT Press, 1992.
[19] H. Li, P. Roivainen, and R. Forchheimer, “3-D motion estimation in model-based facial image coding,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, pp. 545–555, June 1993.
[20] S. Basu, I. Essa, and A. Pentland, "Motion regularization for model-based head tracking," 13th International Conference on Pattern Recognition, pp. 611 - 616, 1996.
[21] F. Jurie and M. Dhome, “A simple and efficient template matching algorithm,” International Conference on Computer Vision (Vancouver, Canada), July 2001.
[22] F. Jurie and M. Dhome, “Hyperplane approximation for template matching,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, pp. 996–100, July 2002.
[23] V. LEPETIT, P. LAGGER, and P. FUA, "Randomized trees for real-time keypoint recognition," International Conference on Computer Vision and Pattern Recognition, pp. 775–781, 2005.
[24] G. D. Hager and P. N. Belhumeur, "Efficient region tracking with parametric models of geometry and illumination,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 10, pp. 1025–1039, 1998.
[25] G. Simon, A. W. Fitzgibbon, and A. Zisserman, "Markerless tracking using planar structures in the scene," IEEE and ACM International Symposium on Augmented Reality, pp. 120 - 128, 2000.
[26] G. Simon and M. O. Berger, “Pose estimation for planar structures,” IEEE Computer Graphics and Applications, Vol. 22, No. 6, pp. 46-53, 2002.
[27] R. I. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, 2nd edition, ISBN: 0521540518, 2003.
[28] R. Sukthankar, R. Stockton, and M. Mullin, "Smarter presentations: exploiting homography in camera-projector systems," Computer Vision, 2001. ICCV 2001.
[29] G. Klein and D. Murray, "Parallel tracking and mapping for small AR workspaces," 6th IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR 2007), pp. 225-234, 2007.
[30] A. J. Davison and N. Kita, “3D simultaneous localisation and map-building using active vision for a robot moving on undulating terrain,” IEEE Conference on Computer Vision and Pattern Recognition, Kauai, 2001.
[31] G. Klein and D. Murray, "Parallel tracking and mapping on a camera phone," 8th IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR 2009), pp. 83-86, 2009.
[32] D. G. Lowe, "Object recognition from local scale-invariant features," International Conference on Computer Vision, Corfu, Greece (September 1999), pp.1150-1157.
[33] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, Vol. 60, No. 2, pp. 91–110, 2004.
[34] Y. Ke and R. Sukthankar, “PCA-SIFT: a more distinctive representation for local image descriptors,” Proc. Conf. Computer Vision and Pattern Recognition, pp. 511-517, 2004.
[35] H. Bay, A. Ess, T. Tuytelaars, and L. van Gool, “Speeded-up robust features (SURF),” Computer Vision and Image Understanding, Vol. 110, No. 3, pp. 346–359, 2008.


[36] I. Skrypnyk and D. G. Lowe, “Scene modelling, recognition and tracking with invariant image features,” International Symposium on Mixed and Augmented Reality (ISMAR’04), pp. 110–119, November 2004.
[37] T. Guan, L. Duan, J. Wu, Y. Chen, and X. Zhang, “Real-time camera pose estimation for wide-area augmented reality applications,” IEEE Computer Graphics and Applications, Vol. 31, No. 3, pp. 56-68, 2011.
[38] J. Herling and W. Broll, “An adaptive training free tracker for mobile phones”, 17th ACM Conference on Virtual Reality Systems and Technology (VRST 2010), pp. 35–42, 2010.
[39] J. Herling and W. Broll, "Markerless tracking for augmented reality," Handbook of Augmented Reality, Chapter 11, pp. 255-272, 2011.
[40] T. Lee and T. Hollerer, "Multithreaded hybrid feature tracking for markerless augmented reality," IEEE Transactions on Visualization and Computer Graphics, Vol. 15, No. 3, pp. 355-368, 2009.
[41] K. Mikolajczyk, and C. Schmid, "A performance evaluation of local descriptors", IEEE Transactions on Pattern Analysis and Machine Intelligence, 10, 27, pp 1615--1630, 2005.
[42] L. Juan, O. Gwun "A comparison of SIFT, PCA-SIFT and SURF", International Journal of Image Processing, 3 (2009), pp. 143–152
[43] Y. Sato, K. Müller, A. Smolic, B. Fröhlich, and T. Wiegand, “SIFT implementation and optimization for general-purpose GPU,” in Proc. of Int. Conf. in Central Europe on Comput. Graphics, Visualization and Comput. Vision., pp. 317-322, Feb. 2007.

[44] S. N. Sinha , J. Frahm , M. Pollefeys , and Y. Genc, “GPU-based video feature tracking and matching,” in Workshop on Edge Computing Using New Commodity Architectures (EDGE), vol. 12, pp. 1-15, May. 2006.
[45] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, "Comm. of the ACM, vol. 24, no. 6, pp. 381-395, 1981.
[46] T.W. Kan, C.H. Teng, and W.S. Chou, “Applying QR Code in augmented reality applications,” International Conference on Virtual Reality Continuum and Its Applications in Industry, Yokohama, Japan, December, 2009, pp. 253-257.
[47] ARToolKit, Available at: http://www.hitl.washington.edu/artoolkit/
[48] QR Code Generator, Available at: http://qrcode.kaywa.com/.
[49] ZXing, Available at: http://code.google.com/p/zxing/.
[50] ARTag, Available at: http://www.artag.net/
[51] NyARToolkit, Available at: http://nyatla.jp/nyartoolkit/wp/?page_id=198/
[52] CUDA, Available at:https://developer.nvidia.com/
[53] Lifesquare, Available at:https://www.lifesquare.com/
[54] ScanMed, Available at:https://scanmedqr.com/
[55] T.-Y. Liu, T.-H. Tan, and Y.-L. Chu, “2D barcode and augmented reality supported English learning system,” 6th IEEE/ACIS International Conference on Computer and Information Science, 2007.
[56] T. Nikolaos and T. Kiyoshi, “QR code calibration for mobile augmented reality applications: Linking a unique physical location to the digital world,” SIGGRAPH 2010.

[57] J.-T. Wang, C.-N. Shyi, T.-W. Hou, and C. P. Fong, “Design and implementation of augmented reality system collaborating with QR code,” 2010 International Computer Symposium, pp. 414-418, 2010.
[58] A. Buchau, W. M. Rucker, U. Wossner and M. Becker, "Augmented reality in teaching of electrodynamics", International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 28, No. 4., pp. 948-963, 2009.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top