(34.237.52.11) 您好!臺灣時間:2021/05/18 14:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蔡彥鈞
研究生(外文):Tsai, Yen-Chun
論文名稱:標槍反裝甲飛彈不同中翼數之氣動力特性分析
論文名稱(外文):Aerodynamic Analysis of Javelin Anti-Armor Missile in the Number of Different Wings
指導教授:李峻溪李峻溪引用關係
指導教授(外文):Li, Chun-Chi
口試委員:戴昌聖戴昌賢賴正權苗志銘李峻溪
口試委員(外文):Tai, Chang-ShengTai, Chang-HsienLai, Cheng-ChyuanMiao, Jr-MingLi, Chun-Chi
口試日期:2013-05-09
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:機械工程碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:136
中文關鍵詞:標槍反裝甲飛彈計算流體力學低速風洞氣動力特性可壓縮性
外文關鍵詞:Javelin antiarmor missilecomputational fluid dynamics (CFD)low-speed wind tunnelaerodynamic characteristicscompressibility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本論文以計算流體力學(Computational Fluid Dynamic,CFD)與低速風洞實驗探討不同中翼數設計對三維標槍反裝甲飛彈的升、阻力的氣動力特性分析。模擬條件為馬赫數M=0.2~0.6、攻角α=-5°~5°,中翼數目分別為0、4、8及12片,彈體尾翼為4片,以BT、BW4T、BW8T及BW12T表示。(B表彈體、W表中翼、T表尾翼、數字代表中翼片數)
研究結果顯示當尾翼不擺動,阻力係數隨中翼片數增加而增加愈大。當攻角變大,阻力係數亦增加。當正負攻角相同,阻力係數值呈現左右對稱的特性。在升力方面,模擬顯示中翼是彈體主要的升力來源,其升力係數與攻角成線性增加關係。中翼片數以從4片增至8片其升力增加幅度愈大,中翼片數從8片增至12片時其升力增加幅度反而大幅降低,探究其原因為中翼片數過多產生翼間干涉現象所致。比較升、阻力係數比,BW8T與BW12T近乎相同並大於BW4T及BT。歸納上述結果,具頂攻特性標槍反裝甲飛彈其最適的中翼數為8片能提供彈體足夠的升力做大姿態的動作。在失速攻角方面,本研究中的4種構型其失速攻角均可達40度以上。
受限於硬體設備,本論文以不可壓縮流低速風洞進行4種彈體模型的吹試,考量飛彈在次音速飛行的流體可壓縮性,參考P-G與V-T轉換公式與模擬結果,推算出此三維飛彈的升、阻力係數轉換公式。經驗證由實驗轉換的數據與模擬相比較,阻力係數與升力係數的誤差分別在1.5%與10%以內,就學術研究而言可減少次音速風洞實驗的花費,不啻為一理想的而可接受的方法。本論文的貢獻可逐步建立我國在反裝甲飛彈的研發能量。
關鍵詞:標槍反裝甲飛彈、計算流體力學、低速風洞、氣動力特性、可壓縮性

In this research, computational fluid dynamics was applied and low-speed wind tunnel experiments were performed to study the aerodynamic characteristics of lift and drag exhibited by a three-dimensional Javelin antiarmor missile. The missile had various numbers of wings (0,4,8, or 12 and a tail of 4) with Mach numbers ranging from 0.2 to 0.6 and angles of attack ranging from -5° to 5°. The types of missiles were denoted as BT, BW4T, BW8T, and BW12T, where B is the missile body, W is the wing, T is the tail, and the arabic numeral is the number of wings.
The results indicated that when the fin did not swing, the drag coefficient of the number of fins increased. When the angle of attack increased, the drag coefficient also increased. When the angles of attack had the same positive and negative values, the drag coefficient values were symmetrical. A simulation indicated that the lift of the wing is the main lift source for the missile body; its lift coefficient increased linearly with the relationship between the angle of attack. When the number of fins was from 4 to 8, the rate increased. A higher number of fins (from 8 to 12) filmsincreased it significantly reduce lift. This study explored the reasons for the excessive number of pieces produced for the wing that generate interference. A comparison of BW8T and BW12T indicated that the lift and drag coefficient ratios of these missiles are nearly identical and greater than those of BW4T and BT. Therefore, the Javelin antiarmor missile in top attack mode works the most efficiently with 8 wings. The configuration in the present study indicated that four model types can reach more than 40° in the stall angle of attack.
Because of hardware limitations, a low-speed wind tunnel that velocity was used in an incompressible flow test on four types of models. Considerations of fluid compressibility when the missiles flew at subsonic speeds, references to the PG and VT transformation formulas, and simulation results were derived to calculate the three-dimensional missile lift and drag coefficient transformation formula. The experimental transformation data and the simulation data were compared. The drag coefficient and lift coefficient errors were less than 1.5% and 10%, respectively. These results can be used to reduce the cost of future subsonic wind tunnel experiments. The methods used in this study were ideal and acceptable, and the contributions of this paper include a gradual improvement in research and development capabilities for antiarmor missiles.
Keywords:Javelin antiarmor missile, computational fluid dynamics (CFD), low-speed wind tunnel, aerodynamic characteristics, compressibility
誌謝
摘要
ABSTRACT
目錄
圖目錄
表目錄
符號說明
1.緒論
1.1研究動機
1.2研究目的
1.3文獻回顧
1.4研究方法
1.5論文架構
2. 標槍飛彈性能分析
2.1 發展歷程
2.2 導引模式
2.3 不同模式飛彈的比較與分析
2.4 標槍飛彈組成部件及優勢
2.4.1標槍飛彈組成部件
2.4.2標槍飛彈的優勢
3. 理論分析
3.1 氣動力特性(升、阻力係數、俯仰力矩)
3.2氣動力干擾
3.3失速攻角
3.4轉換公式
4. 研究方法
4.1 研究流程
4.1.1 參數分析(速度、攻角及中翼片數)
4.1.2研究矩陣
4.2風洞實驗
4.2.1 彈體模型及製作
4.2.2實驗數據量測及處理
4.3 CFD數值模擬
4.3.1 網格系統
4.3.2統御方程式
4.3.3數值方法
4.3.3.1有限體積數值解法
4.3.3.2隱式法(Implicit)
4.3.3.3密度基(Density-Based)法
4.3.3.4紊流Spalart-Allmaras模式
4.3.4紊流模式(Turbulence Model)
4.3.5邊界條件與初始條件
4.3.6網格驗證
5.結果與討論
5.1 馬赫數、攻角及不同中翼片數對氣動力之影響
5.1.1阻力係數
5.1.2升力係數
5.1.3升阻比
5.2失速攻角
5.2.1高攻角流場現象
5.3風洞實驗數據分析
6.結論與未來研究方向
6.1 結論
6.1.1阻力效應
6.1.2升力效應
6.1.3升阻力交聯影響
6.1.4失速攻角
6.1.5風洞實驗
6.2 未來研究方向
參考文獻
自傳

[1]http://www.taiwanus.net/news/press/2010/201012150611101153.htm(2013.3.9)
[2]http://blog.nownews.com/article.php?bid=5381&tid=342879&tyid=F(2013.2.6)
[3]http://img.epochtimes.com.tw/upload/images/2013/04/17/50858_medium.jpg(2013.11.21)
[4]http://www.spsmai.com/military/?id=1780&q=Raytheon%92s-ground-based-anti-tank-guided-missiles.(2013.8.10)
[5]http://zh.wikipedia.org/zh-tw/AGM-114%E5%9C%B0%E7%8D%84%E7%81%AB%E9%A3%9B%E5%BD%88AGM-114地獄火飛彈.(2013.8.10)
[6]http://zh.wikipedia.org/wiki/%E7%B1%B3%E8%98%AD%E5%8F%8D%E5%9D%A6%E5%85%8B%E9%A3%9B%E5%BD%88米蘭飛彈.(2013.8.10)
[7]http://www.freewebs.com/jack-stryker/Javelin%20-%20Copy%20(2).jpg(2013.8.10)
[8]Barrett, R. and Brozoski, F., "Missile Flight Control using Active Flexspar Actuators," Journal of Smart Materials and Structures, Institute of Physics Publishing, Ltd., Techno House, Bristol, UK, Vol. 5, No. 2, March 1996, pp. 121 - 128.
[9]雷娟棉、吳甲生,“多片彈翼反坦克導彈氣動特性實驗研究”,兵工學報,第26卷,第5期,第709-711頁,2005。
[10]傅上珉,“具尾翼彈體之飛行氣動力特性研究”,碩士論文,國防大學理工學院機械工程研究所,桃園,第1-124頁,2013。
[11]Champigny,P.,d'Espiney, P.,Bredif, M.,Broussard, H., and Gillyboeuf, J., “Numerical Simulation of Vortex Flows around Missile Configurations,” RTO AVT Symposium, Loen, Norway, pp. 1-13, 2003.
[12]Se'bastien Deck*, Philippe Duveau, Paulod’Espiney, Philippe Guillen, “Development and application of Spalart-Allmaras one equation turbulence model to three-dimensional supersonic complex configuratioms, ” Aerospace Science and Technology,pp.171-183, 2002.
[13]DeSpirito, J., “Base Pressure Computations of the DERA Generic Missile Wind Tunnel Model,” Army Research Laboratory, Maryland, U.S.A, pp.1-12, 2005.
[14]Mohd ARIFF, SalimM. SALIM* and Siew Cheong CHEAH,“WALL Y+ APPROACH FOR DEALING WITH TURBULENT FLOW OVER ASURFACE MOUNTED CUBE: PART 2 – HIGH REYNOLDS NUMBER,” Seventh International Conference on CFD in the Minerals and Process Industries CSIRO Melbourne,Australia,2009.
[15]Zhang, W.,Liu, Y., and Wang, Y., “Aerodynamic Study of Theater Ballistic Missile Target,” Aerospace Science and Technology, pp.1-5, 2011.
[16]John Harris,NathanSlegers,” Performance of a fire-and-forget anti-tank missile with a damaged wing”, Journal of Mathematical and Computer Modelling,2009.
[17]吳俊達,“反裝甲彈於不同飛行模式之彈體氣動力特性分析”,碩士論文,國防大學理工學院機電能源及航太工程學系機械工程研究所,桃園,第53-54頁,2012。
[18]Dijana Damljanovic, Slobodan Mandic,Dorde Vukovic, “Computational Fluid Dynamics and Wind Tunnel Determination of the Aerodynamic Characteristics of an Axi-Symmetric projectilewith a Conical Tail Flare,” Scientific Technical Review,Vol.61,No.3-4,pp.49-58, 2011.
[19]A.Akgül, H.Y. Akargün, B. Atak, A.E. Çetiner, & O. Göker, “Numerical Investigation of NASA Tandem Control Missile and Experimental Comparison”, Scientific Technical Review, Vol.62, No.1, pp.3-9, 2012.
[20]Lyons, J.W.,Long, D., and Chait, R., “Critical Technology Events in the Developmentof the Stinger and Javelin Missile Systems”National Defense University,Washington, U.S.A, 2006.
[21]ERIC, K., and SHINSEKI., “Javelin Medium Antiarmor Weapon System” Headquarters Department of the Army, Washington, U.S.A, pp. 1-18~19, 2003
[22]http://metalgear.wikia.com/wiki/FGM-148_Javelin(2013.01.18)
[23]http://www.defense.gov/dodcmsshare/homepagephoto/2008-09//hires_080828-M-0564A-154a.jpg(2013.5.26)
[24]http://www.americanordnance.com/sitemap.htm(2013.5.26)
[25]http://www.alternatewars.com/BBOW/Weapons/Javelin_Diagram_Coded.gif
(2013.9.16)
[26]White, Frank, M., VISCOUS FLUID FLOW, McGraw-Hill, New York, pp. 3-16, 1992.
[27]Yen, S., and Hsu, C., “Flow Patterns and Wake structure of a Swept-Back Wing,”AIAA Journal, Vol.45, pp.228-236, 2007.
[28]http://somersf1.blogspot.tw/p/angle-of-attack-aoa-f1-technical-terms.html
(2013.5.26)
[29]Anderson, Jr., J. D., Modern Compressible Flow, McGraw-Hill, New York, pp.256-269, 2004
[30]George, W., and Casey, JR., “Javelin-Close Combat Missile System, Medium,” Headquarters Department of the Army, Washington, U.S.A, pp. 3-15~19, 2008
[31]徐至杰,“機翼在積冰作用下之空氣動力特性研究”,碩士論文,國防大學理工學院機電能源及航太工程學系機械工程研究所,桃園,第41-50頁,2011。
[32]http://en.wikipedia.org/wiki/Law_of_the_wall(2013.11.15)
[33]Munson, Bruce, R., Young, F., Okiishi, Theodore, H., Fundamentals of Fluid Mechanics, Fifth Edition., John Wiley & Sons, Asia, pp.537, 2006.
[34]http://en.wikipedia.org/wiki/Drag_coefficient(2014.2.8)
[35]Robert F. Kunz., Jules W. Lindau., Michael L. Billet., and David R. Stinebring., “Multiphase CFD Modeling of Developed and Supercavitating Flows,”RTO A VT Lecture Series on SupercavitatingFlows, Brussels, Belgium, pp.20-30, 2001.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top