(3.238.173.209) 您好!臺灣時間:2021/05/12 14:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:俞勝為
研究生(外文):Yu, Shen-Wei
論文名稱:Co-Ce-Y複合氧化物之氧空缺及乙醇蒸氣重組性能評估
論文名稱(外文):Evaluation for Oxygen Vacancy on Co-Ce-Y Composite Oxides and Steam Reforming of Ethanol
指導教授:汪成斌汪成斌引用關係
指導教授(外文):Wang, Chen-Bin
口試委員:葉君棣許峰彰吳仁彰汪成斌吳國輝
口試委員(外文):Yeh, Chuin-TihShiu, Feng-JangWu, Ren-JangWang, Chen-BinWu, Kuo-Hui
口試日期:2014-05-14
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:148
中文關鍵詞:乙醇蒸氣重組超音波輔助儲氧能力移動氧
外文關鍵詞:Steam reforming of ethanolUltrasonic-assistedOxygen storage capacityAccessible oxygen
相關次數:
  • 被引用被引用:0
  • 點閱點閱:160
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討Co3O4-CeO2及Co3O4-CeO2-Y2O3觸媒中之移動氧對乙醇蒸氣重組(SRE)之影響。分別以水熱共沉澱法(Hydrothermal Co-precipitation, H)及超音波輔助水熱共沉澱法(Ultrasonic-assisted Hydrothermal Co-precipitation, UH)製備莫耳比為1:1之Co3O4-CeO2觸媒,之後再利用同UH法分別加入2.5、5及10 wt %的Y2O3進行修飾。所有觸媒均利用X光繞射儀(XRD)、程溫還原/程溫氧化(TPR/TPO)、電子能譜儀(XPS)、高解析TEM (HR-TEM)、元素分析(EA)、二氧化碳程溫脫附(CO2-TPD)等方式對觸媒進行特性鑑定。實驗結果顯示Co離子進入CeO2的晶格中可增加觸媒之分散性、氧空缺及提升CeO2的儲/釋氧能力,其中以超音波所製備之Co3O4-CeO2觸媒較顯著,其較多之移動氧在乙醇蒸氣重組反應及抑制積碳中拌演重要角色。Co-Ce(UH)觸媒具較高之活性,在400 oC時乙醇可完全轉換且氫氣選擇率(SH2)達90 %,另此觸媒之高儲氧能力(Oxygen Storage Capacity, OSC)及高移動氧可在積碳生成同時將之氧化/氣化。然而,添加Y使Co2+不易進入CeO2晶格,且未進入CeO2晶格中的Y易堆積在表面而覆蓋活性金屬,並減少氧空缺的生成,故隨Y含量增加而導致活性降低,且易生成積碳。
The effect of accessible oxygen on the steam reforming of ethanol (SRE) over Co3O4-CeO2 and Co3O4-CeO2-Y2O3 catalysts was investigated. Both equal molar ratio of Co3O4-CeO2 catalysts were prepared by hydrothermal co-precipitation (H) and hydrothermal ultrasonic-assisted co-precipitation (UH) methods, and finally the UH method was applied to prepare 2.5, 5, and 10 wt % of yttrium-doped Co3O4-CeO2 catalysts, respectively. All catalysts were characterized through X-ray diffraction (XRD), temperature programmed reduction/temperature programmed oxidation (TPR/TPO), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), elemental analysis (EA) and CO2 - temperature programmed desorption (CO2-TPD) techniques at various stages. The results indicated that the incorporation of cobalt ion into the ceria lattice could increase the dispersion of ceria, oxygen vacancies and promote the oxygen-storing and releasing capability of ceria, especially over the catalyst prepared by ultrasonic-assisted method. The accessible oxygen played an important role on the SRE reaction and resistant to carbon deposition. The Co-Ce(UH) catalyst was more active and selective, i.e., ethanol conversion achieved complete and hydrogen selectivity (SH2) approached 90% at 400 C. The high oxygen storage capacity (OSC) and high accessible oxygen for the Co-Ce(UH) catalyst allowed oxidation/gasification of deposited carbon as soon as it formed, and less coke was detected. However, cobalt ions were not easily incorporated into CeO2 lattice with less formation of oxygen vacancies when the yttrium was added, which led to decrease of activity and more formation of carbonaceous deposits.
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
表目錄 ix
圖目錄 x
1. 緒論 1
1.1 前言 1
1.2 產氫技術 3
1.2.1 碳氫化合物為燃料 4
1.2.2 非碳氫化合物為燃料 5
1.3 乙醇產氫 6
1.3.1 生質乙醇 6
1.3.2 乙醇製氫方法 7
1.3.3 積碳之生成 9
1.4 文獻回顧 10
1.4.1 活性金屬 10
1.4.2 載體 11
1.4.3 促進劑 12
1.4.4 觸媒製備方式 13
1.5 研究動機與方向 14
2. 實驗 15
2.1 實驗藥品 15
2.2 觸媒之製備 15
2.2.1 氧化鈷之製備 16
2.2.2 氧化鈰之製備 16
2.2.3 鈷鈰複合氧化物觸媒之製備 17
2.2.4 鈷鈰釔複合氧化物觸媒之製備 18
2.3 觸媒之特性鑑定 24
2.3.1 X光繞射儀(XRD) 24
2.3.2 感應耦合電漿原子放射光譜儀(ICP-AES) 25
2.3.3 高解析穿透式電子顯微鏡(HR-TEM) 25
2.3.4 氮氣等溫吸/脫附測試(BET) 25
2.3.5 元素分析儀(EA) 27
2.3.6 程溫還原/氧化裝置(TPR/TPO) 27
2.3.7 電子能譜儀(XPS) 28
2.3.8 二氧化碳程溫脫附(CO2-TPD) 29
2.4 乙醇蒸氣重組活性測試 31
2.4.1 活性測試裝置 31
2.4.2 活性測試數據分析 31
3. 結果與討論 35
3.1 Co3O4觸媒及CeO2載體之特性鑑定及SRE反應活性評估 35
3.1.1 反應前之特性鑑定 35
3.1.2 反應活性評估 43
3.1.3 反應後之特性鑑定 50
3.2 Co3O4-CeO2觸媒之特性鑑定及SRE反應活性評估 54
3.2.1 反應前之特性鑑定 54
3.2.2 反應活性評估 71
3.2.3 反應後之特性鑑定 76
3.2.4 長時間穩定性測試 79
3.2.5 穩定性測試後之特性鑑定 81
3.3 Co3O4-CeO2-Y2O3觸媒之特性鑑定及SRE反應活性評估 84
3.3.1 反應前之特性鑑定 84
3.3.2 反應活性評估 94
3.3.3 反應後之特性鑑定 98
3.3.4 長時間穩定性測試 102
3.3.5 穩定性測試後之特性鑑定 104
4. 結論 107
參考文獻 109
附錄A 氫氣檢量線建立 117
附錄B 氧氣檢量線建立 119
附錄C 重疊峰之分峰(I) 121
附錄D 重疊峰之分峰(II) 126
論文發表 130
自傳 132

[1]http://web3.moeaboe.gov.tw/ECW_WEBPAGE/webpage/index.htm(2014.2.11)
[2]吳榮宗,“生質能源之綠色未來”, 2013海峽兩岸氣候變遷與能源永續發展論壇簡報檔,台中,第5頁,2013。
[3]Das, D., and Veziroglu, T. N., “Hydrogen Production by Biological Processes: A Survey of Literature,” International Journal of Hydrogen Energy, Vol. 26, pp. 13-28, 2001.
[4]Rostrup-Nielsen, T., “Manufacture of Hydrogen,” Catalysis Today, Vol. 106, pp. 293-296, 2005.
[5]Holladay, J. D., Hu, J., King, D. L., and Wang, Y., “An Overview of Hydrogen Production Technologies,” Catalysis Today, Vol. 139, pp. 244-260, 2009.
[6]U. S. EIA, “Annual Energy Review 2009,” U. S. Deparment of Energy, U. S. A., pp. 24-29, 2010.
[7]U. S. DoD, “Quadrennial Defense Review Report,” U. S. Department of Defense, U. S. A., pp. 84-88, 2010.
[8]Gross, T. J., Poche, Jr., A. J., and Ennis, K. C., “Beyond Demonstration: The Role of Fuel Cells in DoD’s Energy Strategy,” LMI, U. S. A., pp. 5-6, 2011.
[9]Lyons, K. S., “Fuel Cell Propulsion of Small Unmanned Airvehicles: The Ion Tiger,” U.S. Naval Research Laboratory, U. S. A., pp. 1-36, 2009.
[10]Giefer, Sr., J. W., “German Submarine Class 212A – Fuel Cell Powered Air Independent Propulsion Boat,” Proceedings of 2008 Fuel Cell Sminar & Exposition, Phoenix, U. S. A., DEM31-4, 2008.
[11]http://www.hydrogen2hawaii.com/about/vehicles/(2014.2.11)
[12]曲新生、陳發林、呂錫民,產氫與儲氫技術,五南圖書出版股份有限公司,台北,第10-20頁,2007。
[13]McHugh, K., “Hydrogen Production Methods,” MPR Associates Inc., Alexandria, U. S. A., p. 41, 2005.
[14]Larminie, J., and Dicks, A., Fuel Cell Systems Explained, John Wiley & Sons Ltd, England, pp. 241, 2003.
[15]Lewis, M., Serban, M., Basco, J., and Figueroa, J., “Low Temperature Thermochemical Cycle Development,” Chicago, U. S. A., 2003.
[16]Demirbas, M. F., “Hydrogen from Various Biomass Species via Pyrolysis and Steam Gasification Processes,” Energy Sources, Part A, Vol. 28, pp. 245-252, 2006.
[17]Sørensen, B., Hydrogen and Fuel Cells Emerging Technologies and Applications, Elsevier Academic Press, New York, pp. 22, 2005.
[18]Levin, D. B., Pitt, L., and Love, M., “Biohydrogen Production: Prospects and Limitations to Practical Application,” International Journal of Hydrogen Energy, Vol. 29, pp. 173-185, 2004.
[19]原能會,“第二代生質能源-纖維酒精”,輻射防護簡訊,第90期,第90-4頁,2008。
[20]Anastas, P. T., and Warner, J., Green Chemistry: Theory and Practice, Oxford University Press, London, 1988.
[21]Nigam, P. S., and Singh, A., “Production of Liquid Biofuels from Renewable Resources,” Progress in Energy and Combustion Science, Vol. 37, pp. 52-68, 2011.
[22]Zinoviev, S., Muller-Langer, F., Das, P., Bertero, N., Fornasioer, P., Kaltschmitt, M., Centi, G., and Miertus, S., “Next-Generation Biofuels: Survey of Emerging Technologies and Sustainability Issues,” ChemSusChem, Vol. 3, pp. 1106-1133, 2010.
[23]Bohlmann, G. M., “Process Economic Considerations for Production of Ethanol from Biomass Feedstocks,” Industrial Biotechnology, Vol. 2, pp. 14-20, 2006.
[24]Le Valant A, Garron A, Bion N, Epron F, and Duprez D., “Hydrogen Production from Raw Bioethanol over Rh/MgAl2O4 Catalyst Impact of Impurities: Heavy Alcohol, Aldehyde, Ester, Acid and Amine,” Catalysis Today, Vol. 138, pp. 167-174, 2008.
[25]Yamazaki, T., Kikuchi, N., Katoh, M., Hirose, T., Saito, H., Yoshikawa, T., and Wada, M., “Behavior of Steam Reforming Reaction for Bio-ethanol over Pt/ZrO2 Catalysts,” Applied Catalysis B: Environmental, Vol. 99, pp. 81-88, 2010.
[26]Rass-Hansen, J., Johansson, R., Moller, M., and Christensen, C. H., “Steam Reforming of Technical Bioethanol for Hydrogen Production,” International Journal of Hydrogen Energy, Vol. 33, pp. 4547-4554, 2008.
[27]陳芃,“從微小變為顯著—微藻引領第三代生質燃料發展”,能源報導,台北,第23頁,2010。
[28]潘崇良,“利用藻類生產生質能源”,科學發展,第448期,第26-32頁,2010。
[29]Vaidya, P. D., and Rodrigues, A. E., “Insight into Steam Reforming of Ethanol to Produce Hydrogen for Fuel Cells,” Chemical Engineering Journal, Vol. 117, pp. 40-41, 2006.
[30]Ni, M., Leung, D. Y. C., and Leung, M. K. H., “A Review on Reforming Bio-ethanol for Hydrogen Production,” International Journal of Hydrogen Production, Vol. 32, pp. 3238-3247, 2007.
[31]Piscina, P. R. D. L., and Homs, M., “Use of Biofuels to Produce Hydrogen (Reformation Processes),” Chemical Society Reviews, Vol. 37, pp. 2459-2467, 2008.
[32]Mattos, L. V., Jacobs, G., Davis, B. H., and Noronha, F. B., “Production of Hydrogen from Ethanol: Review of Reaction Mechanism and Catalyst Deactivation,” Chemical Reviews, Vol. 112, pp. 4094-4123, 2012.
[33]http://www.webelements.com/(2014.3.3)
[34]Auprêtre, F., Descorme, C., and Duprez, D., “Bio-ethanol Catalytic Steam Reforming over Supported Metal Catalysts,” Catalysis Communications, Vol. 3, pp. 263-267, 2002.
[35]Frusteri, F., Freni, S., Spadaro, L., Chiodo, V., Bonura, G., Donato, S., and Cavallaro, S., “H2 Production for MC Fuel Cell by Steam Reforming of Ethanol over MgO Supported Pd, Rh, Ni and Co Catalysts,” Catalysis Communications, Vol. 5, pp. 611-615, 2004.
[36]Song, H., Zhang, L., Watson, R. B., Braden, D., and Ozkan, U. S., “Investigation of Bio-ethanol Steam Reforming over Cobalt-based Catalysts,” Catalysis Today, Vol. 129, pp. 349-354, 2007.
[37]Llorca, J., Homs, N., Sales, J., and de la Piscina, P. R., “Efficient Production of Hydrogen over Supported Cobalt Catalysts from Ethanol Steam Reforming,” Journal of Catalysis, Vol. 209, pp. 306-317, 2002.
[38]Le Valant, A., Garron, A., Bion, N., Duprez, D., and Epron, F., “Effect of Higher Alcohols on the Performances of a 1% Rh/MgAl2O4/Al2O3 Catalyst for Hydrogen Production by Crude Bioethanol Steam Reforming,” International Journal of Hydrogen Energy, Vol. 36, pp. 311-318, 2011.
[39]Song, H., and Ozkan, U. S., “Changing the Oxygen Mobility in Co/Ceria Catalysts by Ca Incorporation: Implications for Ethanol Steam Reforming,” Journal of Physical Chemistry A, Vol. 114, pp. 3796-3801, 2010.
[40]Muñoz, M., Moreno, S., and Molina, R., “Promoting Effect of Ce and Pr in Co Catalysts for Hydrogen Production via Oxidative Steam Reforming of Ethanol,” Catalysis Today, Vol. 213, pp. 33-41, 2013.
[41]Song, H., Mirkelamoglu, B., and Ozkan, U. S., “Effect of Cobalt Precursor on the Performance of Ceria-supported Cobalt Catalysts for Ethanol Steam Reforming,” Applied Catalysis A: General, Vol. 382, pp. 58-64, 2010.
[42]Soykal, I. I., Sohn, H., and Ozkan, U. S., “Effect of Support Particle Size in Steam Reforming of Ethanol over Co/CeO2 Catalysts,” ACS Catalysis, Vol. 2, pp. 2335-2348, 2012.
[43]Wang, H., Ye, J. L., Liu, Y., Li, Y. D., and Qin, Y. N., “Steam Reforming of Ethanol over Co3O4/CeO2 Catalysts Prepared by Different Methods,” Catalysis Today, Vol. 129, pp. 305-312, 2007.
[44]Soykal, I. I., Bayram, B., Sohn, H., Gawade, P., Miller, J. T., and Ozkan, U. S., “Ethanol Steam Reforming over Co/CeO2 Catalysts: Investigation of the Effect of Ceria Morphology,” Applied Catalysis A: General, Vol. 449, pp. 47-58, 2012.
[45]KasÏpar, J., Fornasiero, P., and Graziani, M., “Use of CeO2-based Oxides in the Three-way Catalysis,” Catalysis Today, Vol. 50, pp. 285-298, 1999.
[46]Esch, F., Fabris, S., Zhou, L., Montini, T., Africh, C., Fornasiero, P., Comelli, G., and Rosei, R., “Electron Localization Determines Defect Formation on Ceria Substrates”, Science, Vol. 309, pp.752-755, 2005.
[47]Campbell, C. T., and Peden, C. H. F., “Oxygen Vacancies and Catalysis on Ceria Surfaces”, Science, Vol. 309, pp. 713-714, 2005.
[48]Song, H., and Ozkan, U. S., “Ethanol Steam Reforming over Co-based Catalysts: Role of Oxygen Mobility,” Journal of Catalysis, Vol. 261, pp. 66-74, 2009.
[49]Fatsikostas, A. N., and Verykios, X. E., “Reaction Network of Steam Reforming of Ethanol over Ni-based Catalysts,” Journal of Catalysis, Vol. 225, pp. 439-452, 2004.
[50]Can, F., Le Valant, A., Bion, N., Epron, F., and Duprez, D., “New Active and Selective Rh-REOx-Al2O3 Catalysts for Ethanol Steam Reforming,” Journal of Physical Chemistry C, Vol 112, pp. 14145-14153, 2008.
[51]Guo, J., Xin, X., Zhang, X., and Zhang, S., “Ultrasonic-induced Synthesis of High Surface Area Colloids CeO2-ZrO2,” Journal of Nanoparticle Research, Vol. 11, pp. 737-741, 2009.
[52]Liu, S. W., Liu, J. Y., Liu, Y. H., Huang, Y. H., Yeh, C. T., and Wang, C. B., “Ultrasonic-assisted Fabrication of LaNiOx Composite Oxide Nanotubes and Application to the Steam Reforming of Ethanol,” Catalysis Today, Vol. 164, pp. 246-250, 2011.
[53]Brunauer, S., Emmett, P. H., and Teller, E., “Adsorption of Gases in Multimolecular Layers,” Journal of American Chememical Society, Vol. 60, pp. 309-319, 1938.
[54]Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J. and Siemieniewska, T., “Reporting Physisorption Data for Gas/solid Systems with Special Reference to the Determination of Surface Area and Porosity,” Pure & Applied Chemistry, Vol. 57, pp. 603-619, 1985.
[55]Sexton, B. A., Hughes, A. E., and Turney, T. W., “An XPS and TPR Study of the Reduction of Promoted Cobalt-Kieselguhr Fischer-Tropsch Catalysts,” Journal of Catalysis, Vol. 97, pp. 390-406, 1986.
[56]Wang, C. B., Lee, C. C., Bi, J. L., Siang, J. Y., Liu, J. Y., and Yeh, C. T., “Study on the Steam Reforming of Ethanol over Cobalt Oxides,” Catalysis Today, Vol. 146, pp. 76-81.
[57]Tang, C. W., Wang, C. B., and Chien, S. H., “Characterization of Cobalt Oxides Studied by FT-IR, Raman, TPR and TG-MS,” Thermochimica Acta, Vol. 473, pp. 68-73.
[58]Jansson, J., Palmqvist, A. E. C., Fridell, E., Skoglundh, M., Osterlund, L., Thormahlen, P., and Langer, V., “On the Catalytic Activity of Co3O4 in Low-Temperature CO Oxidation,” Journal of Catalysis, Vol. 211, pp. 387-397.
[59]Burgoughs, P., Hamnett, A., Orchard, A. F., and Thornton, G., “Satellite Structure in the X-Ray Photoelectron Spectra of some Binary and Mixed Oxides of Lanthanum and Cerium” Journal of Chemical Society, Dalton Transactions, Vol. 17, pp. 1686-1698, 1976.
[60]Baron, M., Bondarchuk, O., Stacchiola, D., Shaikhutdinov, S., and Freund, H. J., “Interaction of Gold with Cerium Oxide Supports: CeO2 (111) Thin Films vs CeOx Nanoparticles” Journal of Physical Chemmistry C, Vol. 113, pp. 6042-6049, 2009.
[61]Deshpande, S., Patil, S., Kuchibhatla, S. V., and Seal, S., “Size Dependency Variation in Lattice Parameter and Valency States in Nanocrystalline Cerium Oxide” Applied Physical Letter, Vol. 87, pp. 133113, 2005.
[62]Xue, L., Zhang, C., He, H., and Teraoka, Y., “Catalytic Decomposition of N2O over CeO2 Promoted Co3O4 Spinel Catalyst,” Applied Catalysis B: Environmental, Vol. 75, pp. 167-174, 2007.
[63]Schryer, D. R., Upchurch, B. T., Sidney, B. D., Brown, K. G., Hoflund, G. B., and Herz, R. K., “A Proposed Nechanism for Pt/SnOx-catalyzed CO Oxidation”, Journal of Catalysis, Vol. 130, pp. 314-317, 1991.
[64]Wang, S., Zhao, L., Wang, W., Zhao, Y., Zhang, G., Ma, X., and Gong, J., “Morphology Control of Ceria Nanocrystals for Catalytic Conversion of CO2 with Methanol,” Nanoscale, Vol. 5, pp. 5582-5588, 2013.
[65]Soykal, I. I., Sohn, H., Singh, D., Miller, J. T., and Ozkan, U. S., “Reduction Characteristics of Ceria under Ethanol Steam Reforming Conditions: Effect of the Particle Size,” ACS Catalysis, Vol. 4, pp. 585-592, 2014.
[66]Takeguchi, T., Furukawa, S. N., and Inoue, M., “Hydrogen Spillover from NiO to the Large Surface Area CeO2-ZrO2 Solid Solutions and Activity of the NiO/CeO2-ZrO2 Catalysts for Partial Oxidation of Methane,” Journal of Catalysis, Vol. 202, pp. 14-24, 2001.
[67]Wang, J. B., Hsiao, S. Z., and Huang, T. J., “Study of Carbon Dioxide Reforming of Methane over Ni/yttria-doped Ceria and Effect of Thermal Treatments of Support on the Activity Behaviors,” Applied Catalysis A : General, Vol. 246, pp. 197-211, 2003.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔