跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/04 20:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:簡碧樺
研究生(外文):Bi-Hua Jian
論文名稱:以石墨烯製備透明加熱薄膜之研究
論文名稱(外文):Research of Transparent Film Heaters Based on Graphene Materials
指導教授:葛明德葛明德引用關係
指導教授(外文):Ming-Der Ger
口試委員:葛明德蒲念文劉益銘孫嘉良張仍奎
口試委員(外文):Ming-Der GerNen-Wen PuYih-Ming LiuChia-Liang SunJeng-Kuei Chang
口試日期:2014-07-09
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:71
中文關鍵詞:石墨烯透明導電膜除霧器
外文關鍵詞:GrapheneTransparent conductive filmDefogger
相關次數:
  • 被引用被引用:0
  • 點閱點閱:321
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
透明加熱玻璃已成為一個廣泛的應用領域,如車窗除霧器、航空電子顯示器、戶外顯示面板、潛水望遠鏡、浴室除霧鏡及其他保溫櫥窗。而石墨烯透明加熱薄膜類似傳統金屬導線歐姆式加熱系統達到加熱及除霧的功能,本研究目的為利用石墨烯優異的性能及良好的可撓性在低耗能的請況下達到除霧的效果。
本研究主要將石墨烯透明導電膜應用於透明除霧器,在實驗主軸上分為三大部份,第一部分探討如何提升石墨烯透明導電膜之性能,首先探討氧化碎片對透明導電膜性能之影響,將氧化碎片去除後,提昇其性能;另一方面,利用不同的離心速度篩選不同的石墨烯尺寸,發現可藉由離心將雜質去除,並利用大片狀的石墨烯製備透明導電膜,可有效提升性能;最後,從成膜方式來探討性能差異,我們以Langmuir-Blodgett (LB)成膜及自組裝成膜等兩種方式來做比較,LB成膜儀利用表面壓力來判斷成膜條件,經由精準控制表面成膜壓力,減少石墨烯片狀重疊狀況,在穿透度77 %下片電阻值從20 kΩ/sq降為10 kΩ/sq。
第二部分針對成長銀顆粒於石墨烯邊緣進行討論,我們利用聚乙烯亞胺(PEI)控制銀還原於石墨烯邊緣,可減少銀金屬顆粒對透光度之負面影響,並提昇石墨烯透明導電膜導電性能,比較不同PEI濃度對於銀顆粒多寡及還原狀況進行研究,發現在適當的濃度下可使片電阻值降為1.1 kΩ/sq(穿透度78 %)。第三部分為實際應用測試,利用本研究中的石墨烯透明導電膜應用於透明除霧窗上,探討透明玻璃搭配石墨烯膜的加熱性能與除霧狀況。

Transparent heating glass has become a wide range of applications, such as window defogger, avionics displays, outdoor display panel, diving telescope, microscope and other insulation defogging bathroom window. The transparent graphene films like traditional metal heating wires ohmic heating and defogging heating system to achieve functional purpose of this study is the use of graphene excellent performance and good flexibility at low energy reaches defogging Please conditions effect.
In this study, the graphene transparent conductive film used in transparent defogger on experimental spindle is divided into three parts, the first part discusses how to enhance the performance of graphene transparent conductive film, the first to explore the oxidation debris on the performance of the transparent conductive film Preparation of graphene other hand, the selection of a different type of centrifugal speeds graphene size, impurities found to be removed by centrifugation, and the use of a large sheet; impact debris using caustic after the removal of the oxide, can improve the performance of transparent conductive film, which can effectively reduce the sheet resistance value increased penetration; Finally, from film to explore the way the performance difference, we Langmuir-Blodgett (LB) film and other film-forming and self-assembly are two ways to do more , LB film forming apparatus using surface pressure to determine the deposition conditions through precise control of the surface film pressure to reduce overlap situation graphene flake, 77% of showings in penetration resistance values from 20 kΩ / sq reduced to 10 kΩ / sq.
For the second part of the silver particles grow on the edge of the graphene discussion, we use polyethylene imine (PEI) control the reduction of silver on the edge of the graphene may reduce the negative effects of silver in the light transmittance of the metal particles and to improve the transparent conductive graphene the conductivity of the membrane, effectively reduce the sheet resistance and improve penetration, comparing different concentrations of PEI and the amount of reduction of the silver particles situation, and found that the sheet resistance can make the appropriate concentration at reduced 1.1 kΩ / sq (penetration 78%). The third part is the actual application of the test, in this study using the graphene on the transparent conductive film is applied to a transparent window defogging discussed with the graphene transparent glass film properties and demisting heating conditions, and demisting of the aforementioned various graphene Comparative performance.

摘要 ii
目錄 vi
表目錄 viii
圖目錄 ix
1. 緒論 1
1.1前言 1
1.2動機與目的 1
2. 文獻回顧 3
2.1透明加熱除霧器 3
2.1.1奈米碳管除霧窗 3
2.2石墨烯 8
2.2.1石墨烯的結構與物理性質 9
2.2.2石墨烯的製備方法 10
2.3 透明導電膜 23
2.3.1透明導電膜介紹 23
2.3.2透明導電膜製備 25
2.3.3 Langmuir-Blodgett 30
2.4石墨烯摻雜或修飾奈米金屬顆粒 32
2.4.1石墨烯表面修飾奈米金屬顆粒 33
2.4.2石墨烯邊緣修飾奈米金屬顆粒 34
3. 實驗方法與設備 36
3.1實驗材料與設備 36
3.1.1實驗材料 36
3.1.2實驗設備 36
3.2實驗製備流程與步驟 38
3.2.1製備石墨烯透明導電膜 38
3.2.2石墨烯LB成膜 39
3.2.3石墨烯邊緣參雜奈米銀顆粒 40
3.2.4石墨烯除霧窗 40
3.3檢測方式 42
4. 結果與討論 43
4.1石墨烯製備透明導電膜 43
4.1.1石墨烯表面氧化碎片對透明導電膜特性之影響 44
4.1.2石墨烯片狀大小對透明導電膜之影響 48
4.1.3不同成膜方式對透明導電膜之性能影響 52
4.2石墨烯邊緣修飾奈米銀顆粒製備透明導電膜 55
4.2.1 PEI濃度對修飾銀顆粒之分析 55
4.2.2石墨烯邊緣修飾奈米銀顆粒對透明導電膜之性能影響 59
4.3石墨烯透明導電膜應用於透明除霧器之研究 61
5. 結論 65
參考文獻 66 

[1]Kang, T. J., Kim, T., Seo, M. S., Park, Y. H., and Kim, Y. H., “Thickness-Dependent Thermal Resistance of a Transparent Glass Heater with a Single-Walled Carbon Nanotube Coating,” Carbon, Vol. 49, pp. 1087-1093, 2011.
[2]Bae, J. J., Lim, S. C., Han, G. H., Jo, Y. W., Doung, D. L., Kim, E. S., Chae, S. J., Huy, T. Q., Luan, N. V., and Lee, Y. H., “Heat Dissipation of Transparent Graphene Defoggers, ” Materials Views, pp.1-8, 2012.
[3]Sui, D., Huang, P. Y., Huang, L., Liang , J. J., Ma, Y. F., Chen, Y. S., “Flexible and Transparent Electrothermal Film Heaters Based on Graphene Materials,” small, Vol. 7, No. 22, pp. 3186–3192, 2011.
[4]洪偉修,“世界上最薄的材料-石墨烯”,98康喜化學報,11月號,2009。
[5]Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., “Electric Field Effect in Atomically Thin Carbon Films,” Science, Vol. 22, pp. 666-669. 2004.
[6]Fasolino, A., Los, J. H., and Katsnelson, M. I., “Intrinsic Ripples in Graphene,”
Nature Materials,Vol. 6, pp. 858-861, 2007.
[7]林永昌、鄭碩方、邱博文,“石墨烯之電子特性與電子元件之應用潛力", 工業材料雜誌,第291卷,3月,第116-122頁,2011。
[8]Wu, J., Agrawal, M., Becerril, H. A., Bao, Z., Liu, Z., Chen, Y., and Peumans, P., ” Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes,” Acs Nono, Vol. 4, No.1, pp. 43-48, 2010.
[9]Lee, C., Wei, X., Kysar, J. W., Hone, J., Science, Vol.321, pp. 385-390, 2008.
[10]Katsnelson, M. I., “Graphene: Carbon in Two Dimensions,” Materials Today, Vol.
10, No. 1-2, pp. 20-27, 2007.
[11]Iijima, S., “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, pp. 56-58, 1991.
[12]呂俊頡,“以化學氣相沉積法控制單層與雙層石墨於圖紋化基板之成長”,國立清華大學電子工程研究所碩士論文,新竹,第16-22頁,2009。
[13] Su, C. Y., Lu, A. Y., Xu, Y., Chen, F.R., Khlobystov, A. N., and Li, L. J., “High-
Quality Thin Graphene Films From Fast Electrochemical Exfoliation,” ACS Nano,Vol. 5(3), pp 2332-2339, 2011.
[14]Berger, C., Song, Z., Li ,T., Li , X., Ogbazghi, A. Y., Feng, R., Dai, Z., Marchenkov, A. N., Conrad, E. H., First, P. N., and Heer, W. A., “Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route Toward Graphene-Based Nanoelectronics, ” Georgia Institute of Technology, Atlanta, pp. 30332-0430, 2004.
[15]Tanaka, T., Jin, H., Miyata, Y., Fujii, S., Suga, H., Naitoh, Y., Minari, T., Miyadera,
T., Tsukagoshi, K., and Kataura, H., “Simple and Scalable Gel-Based Separation of Metallic and Semiconducting Carbon Nanotubes, ” Nano Lett, Vol. 9, pp. 1497–1500 , 2009.
[16] Kosynkin, D. V., Higginbotham, A. L. S., A., Lomeda, J. R., Dimiev, A., Price, B. K., and Tour, J. M., “Longitudinal Unzipping of Carbon Nanotubes to form Graphene Nanoribbons, ”Nature, Vol. 458, pp. 872-876, 2009.
[17]Bae, S., Kim, H., Lee, Y., Xu, X., Park, J. S., Zheng, Y, Balakrishnan, J., Lei, T., Kim, H. R., Song, Y. I., Kim, Y. J., Kim, K. S., Ozyilmaz, B., Ahn, J. H., Hong, B. H., and Iijima, S., “Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes,” Nature, Vol. 5, pp. 574-578, 2010.
[18]Pu, N. W., Wang, C. A., Sung Y., Liu, Y. M., and Ger, M. D., “Production of Few-Layer Graphene by Supercritical CO2 Exfoliation of Graphite,” Materials Letters, Vol. 63, pp. 1987-1989, 2009.
[19]Buglione, L., Chng, E. L. K., Ambrosi, A., Sofer, Z., and Pumera, M., “Graphene Materials Preparation Methods Have Dramatic Influence Upon Their Capacitance, ” Electrochemistry Communications, Vol. 14, pp. 5-8, 2011.
[20]Schniepp, H. C., Li, J. L., McAllister, M. J., and Hiroaki, S., “Functionalized Single Graphene Sheets Derived from Splitting graphite Oxide,” Phys Chem Lett, Vol. 110, pp. 8535- 8539, 2006.
[21]Geng, Y., Wang, S. J., and Kim, J. K., “Preparation of graphite nanoplatelets and graphene sheets,” Science, Vol. 336. pp. 592-598, 2009.
[22]Hernandez, Y., Lotya, V. N. M., Blighe, F. M., Sun, Z., “High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite, ” Nature, Vol. 3, pp. 563-568, 2008.
[23]江松勳,“AZO透明導電膜之製備與特性分析”,國立成功大學化學工程學系研究所碩士論文,台南,第10-15頁,2006。
[23]Su, C. Y., Lu, A. Y., Xu, Y., Chen, F.R., Khlobystov, A. N., and Li, L. J., “High-Quality Thin Graphene films from fast Electrochemical Exfoliation,” ACS Nano,Vol. 5(3), pp. 2332-2339, 2011.
[24]Ma, Q. B., Ye, Z. Z., He, H. P., Wang, J. R., Zhu, L. P., and Zhao, B. H., “Preparation and Characterization of Transparent Conductive ZnO : Ga Films by DC Reactive Magnetro Sputtering,” Materials Characterization, Vol. 59, pp.124-128, 2008.
[25]Han, M. Y., and Jou, J. H., “Determination of The Mechanical Properties of Magnetron-Sputtered Zinc Oxide thin Films on Substrates,” Thin Solid Films,Vol. 260, pp. 58-64. 1995.
[26]Song, P. K., Watanabe, M., Kon, M., Mitsui, A., and Shigesato, Y., “Electricaland Optical Properties of Gallium-Doped Zinc Oxide Films Deposited by Dcmagnetron Sputtering,” Thin Solid Films, Vol. 411, pp. 82-86, 2002.
[27]Yan, M., Zhang, H. T., Widjaja, E. J., and Chang, R. P. H., “Self-Assembly of Well-Aligned Gallium-Doped Zinc Oxide Nanorods,” Appl. Phys., Vol. 94, pp.5240-5246. 2003.
[28]Liu, Z. F., Shan, F. K., Li, Y. X., Shin, B. C., and Yu, Y. S., “Epitaxial Growth and Properties of Ga-doped ZnO Films Grown by Pulsed Laser Deposition,” Journal of Crystal Growth, Vol. 259, pp. 130-136, 2003.
[29]Cheong, K. Y., Muti, N., and Ramanan, S. R., “Electrical and Optical Studies of ZnO : Ga Thin Films Fabricated Via the Sol–Gel Technique,” Thin Solid Films, Vol. 410, pp. 142-146, 2002.
[30]Lee, J. H., and Park, B. O., “Transparent Conducting ZnO : Al, In and Sn Thin Films Deposited by the Sol–Gel Method,” Thin Solid Films, ” Vol. 426, pp. 94-99, 2003.
[31]Kim, J., Kim, F., and Huang, J., “Seeing Graphene-Based Sheets, ” Elsevier Ltd, Vol. 13, pp. 28-38, 2010.
[32]Young, M. T. and Keun, S. D., “Effects of Rapid Thermal Annealing on The Morphology and Electrical Properties of ZnO/In Films,” Thin Solid Films, Vol. 410, pp. 8-13, 2002.
[33]Zhao, J., Pei, S., Ren, W., Gao, L., and Cheng, H. M., “Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films,” ACSnano, Vol. 4, pp. 5245–5252, 2010.
[34]Thomas, H. R., Day, S. P., Woodruff, W. E., Vallés, C., Young, R. J., Kinloch, I. A., Morley, G. W., Hanna, J. V., Wilson, N. R.,and RourkeChem, J. P., “Deoxygenation of Graphene Oxide: Reduction or Cleaning?,” Mater, Vol. 25, pp. 3580 – 3588, 2013.
[35]Tung, V. C., Chen, L. M., Allen, M. J., Wassei, J. K., Nelson, K., Kaner, R. B., and Yang, Y., ”Low-Temperature Solution Processing of Graphene - Carbon Nanotube HybridMaterials for High-Performance Transparent Conductors,” Nano Lett, , Vol. 9 (5), pp. 1949–1955, 2009.
[36]Decher, G., ”Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites,” Science, Vol. 277, pp. 1232-1237, 1997.
[37]Kasry, A., Kuroda, M. A., Martyna, G. J., Tulevski, G. S., and Bol, A. A., ”Chemical Doping of Large-Area Stacked Graphene Films for Use as Transparent, Conducting Electrodes,” ACSnano, Vol. 4.NO.7, pp. 3839–3844, 2010.
[38]Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnelson, M. I., Novoselov, K. S., ”Detection of Individual Gas Molecules Adsorbed on Grapheme,” Nat. Mater., Vol. 6 (9), pp. 652–655, 2007.
[39]Karthick, R., Brindha, M., Selvaraj, M., Ramu, S., ” Stable colloidal dispersion of functionalized reduced graphene oxide in aqueous medium for transparent conductive film,” Journal of Colloid and Interface Science, Vol. 406, pp. 69–74, 2013.
[40]Cassell, A. M., Scrivens, W. A., and Tour, J. M., ”Graphite Electrodes Containing Nanometer-Sized MetalParticles and Their Use in the Synthesis off Single-Walled Carbon Nanotube Composites,” Chem. Mater., Vol. 8, No. 7, pp. 1545-1549, 1996.
[41]Zhang, Y., Chen, B., Zhang, L., Huang, J., Chen, F., Yang, Z., Zhang, J. Y., and Zhijun,” Controlled Assembly of Fe3O4 Magnetic Nanoparticles on Graphene Oxide,” Nanoscale, Vol. 3, pp. 1446-1450, 2011.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊