跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/27 06:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖家緯
研究生(外文):Chia-Wei Liao
論文名稱:以奈米碳材製備導熱及高電阻熱相變複合材料之研究
論文名稱(外文):High-Electrical-Resistivity Thermally-Conductive Phase Change Materials Prepared by Adding Nanographitic Fillers into Paraffin
指導教授:葛明德葛明德引用關係
指導教授(外文):Ming-Der Ger
口試委員:葛明德蒲念文劉益銘孫嘉良張仍奎
口試委員(外文):Ming-Der GerNen-Wen PuYih-Ming LiuChia-Liang SunJeng-Kuei Chang
口試日期:2014-07-09
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:61
中文關鍵詞:剝落奈米石墨薄片熱傳導係數高電阻率相變材料
外文關鍵詞:Exfoliated graphite nanoplateletsThermal conductivityHigh electrical resistivityPhase change materials
相關次數:
  • 被引用被引用:2
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本文主要分為兩大部分,第一部分我們探討氮化鋁(AlN)與剝落石墨奈米薄片(xGnP)兩種填充材填充於石蠟系統製備成相變複合材,並針對其進行粒徑大小分析、填充量的探討以及矽烷偶合劑改質之影響,發現AlN填充材在粒徑大小為40 μm以及xGnP於超音波處理時間為30 min有著最佳的熱傳導性能,接著我們嘗試將矽烷耦合劑ATPS以官能基修飾AlN,並做為與石蠟之間的橋鍵,發現AlN透過矽烷的改質確實對於石蠟系統的分散性以及結合力有著顯著的提升。最後將兩種填料做為複合填充材,而這樣不同幾何結構粒徑大小的填充材堆積,形成緻密導熱網絡,使得熱傳導係數大幅明顯的提升。
在第二部分中,由於我們添加石墨材料到熱相變化材料並改善石蠟的導熱性,利用碳材的高導熱性,讓熱相變化材料能夠迅速傳遞熱能,但石墨碳材於相變材料中形成導電路徑而發生短路現象。故我們將改質後的xGnP (M-xGnP) 與石蠟做混拌,利用強烈氧化處理增加石墨結構上之缺陷,這些缺陷會影響導電性質,進而提高相變材料的電阻率,藉由此酸改質方式來達成xGnP/相變複合材料絕緣之需求,可有效避免電子設備在高電壓運作下之發生短路之問題,大幅提升機電設備的可靠性和安全性。

This paper is divided into two parts, the first part we explore aluminum nitride (AlN) and exfoliated graphite nanoplatelets (xGnPs) two filler filling system prepared by paraffin composite phase change materials (PCMs), and particle size analysis of its discuss and influence the amount of filler modified silane coupling agent, it is found in AlN filler particle size of 40 μm and xGnPs in ultrasound treatment time was 30 min with optimal thermal conductivity, and then we try to silane coupling agent ATPS modified with functional groups AlN, and as a bridge between the wax and found AlN really binding force for the dispersion and paraffin system has significantly enhanced by the modified silane. Finally, as a composite of two filler filler, and filler particle size so different geometries stacked to form a dense thermal network, making substantial significantly improved thermal conductivity.
In the second part, we added xGnPs as a filler into paraffin PCMs to significantly improve the poor thermal conductivity of paraffin and enhance the heat transfer rate of the PCM. However, the electrical resistivity of paraffin was reduced from above 1012 Ω-cm to below 10 Ω-cm due to the high electrical conductivity of the added carbon fillers. For applications in electrical devices, such a low resistivity is undesirable since it might cause a short-circuit problem. In order to solve this problem, the xGnPs were thus modified by an acid treatment to strongly oxidize the surface. The electrical resistivity of the PCM filled with the modified xGnPs (M-xGnPs) was significantly raised by up to 11 orders of magnitude while the thermal conductivity was not severely compromised. This method can improve the safety and usefulness of nanographite-filled PCMs when applied to electrical systems.

誌謝 ii
摘要 iii
ABSTRACT iv
目錄 vi
表目錄 ix
圖目錄 x
1. 緒論 1
1.1前言 1
1.2研究動機與目的 2
2. 文獻回顧 4
2.1碳材之簡介 4
2.1.1天然石墨 4
2.1.2膨脹石墨 4
2.1.3石墨烯 5
2.1.4奈米碳管 6
2.2氮化物陶瓷材料之簡介 7
2.2.1氮化硼 8
2.2.2氮化鋁 9
2.3石臘 10
2.4矽烷偶合劑 10
2.5相變化材料 11
2.5.1碳材相變材料 12
2.5.2氮化物相變材料 13
2.5.3複合相變材料 15
3. 研究方法 16
3.1實驗藥品 16
3.2實驗器材及儀器設備 16
3.3研究方法 17
3.4矽烷改質氮化鋁 18
3.5改質剝落石墨奈米薄片 18
3.5.1剝落石墨奈米薄片製備 18
3.5.2改質剝落石墨奈米薄片製備 18
3.6相變材料之製備 18
3.7特性分析與檢測儀器介紹 21
3.7.1 AlN、xGnP、M-xGnP之特性分析 21
3.7.2相變複合材料之特性分析 21
4. 研究結果與討論 23
4.1 xGnP/S-AlN相變複合材料之特性分析 23
4.1.1 AlN對相變材料之特性影響 23
4.1.1.1顆粒大小對相變材料之特性影響 23
4.1.1.2矽烷耦合劑對相變材料之特性影響 26
4.1.2 xGnP對複合相變材料之特性影響 31
4.1.3 xGnP/S-AlN對複合相變材料之特性影響 34
4.2 M-xGnP/S-AlN相變複合材料之特性 37
4.2.1溫度對M-xGnP/PCM之特性影響 37
4.2.1.1溫度對xGnP表面改質之特性分析 37
4.2.1.2溫度對xGnP表面改質之性能影響 43
4.2.2改質時間對M-xGnP相變材料之特性影響 45
4.2.2.1改質時間對xGnP表面改質之特性分析 45
4.2.2.2改質時間對xGnP表面改質之性能影響 50
4.2.3 M-xGnP/S-AlN對複合相變材料特性之特性影響 52
5. 結論 54
參考文獻 55
自傳 61

[1]黃振東,熱介面材料之特性與應用,工業材料雜誌,第200期,2005。
[2]林子婷,“化學插層法製備石墨烯奈米薄片於熱相變材料之應用”,碩士論文,國防大學理工學院應用化學及材料科學學系,第1-85頁,2010。
[3]艾德生,新能源材料:基礎與應用,化學工業出版社,2010。
[4]吳宗男,相變化材料封裝方法與其應用於熱交換器之分析,碩士論文,崑山科技大學機械工程研究所,第1-106頁,2011。
[5]Zhao, J., Guo, Y., Feng, F., Tong, Q., Qv, W., and Wang, H., “Microstructure and Thermal Properties of a Paraffin/Expanded Graphite Phase-Change Composite For Thermal Storage,” Renewable Energy, Vol. 36, pp. 1339-1342, 2011.
[6]Kenisarin, M., and Mahkamov, K., “Solar Energy Storage Using Phase Change Materials,” Renewable Sustainable Energy Reviews, Vol. 11, pp. 1913-1965, 2007.
[7]Koca, A., Oztop, H. F., and Koyun, T., “Energy and Exergy Analysis of a Latent Heat Storage System with Phase Change Material for a Solar Collector,” Renewable Energy, Vol. 33, pp. 567-574, 2008.
[8]Long, J. Y., “Numerical and Experimental Investigation for Heat Transfer in Triplex Concentric Tube with Phase Change Material for Thermal Energy Storage,” Solar Energy, Vol. 82, pp. 977-985, 2008.
[9]Verma, P., and Singal, V. S. K., “Review of Mathematical Modeling on Latent Heat Thermal Energy Storage Systems Using Phase-Change Material,” Renewable Sustainable Energy Reviews, Vol. 12, pp. 999-1031, 2008.
[10]Mazman, M., Cabeza, L. F., and Mehling, H., “Utilization of Phase Change Materials in Solar Domestic Hot Water Systems,” Renewable Energy, Vol. 34, pp. 1639-1643, 2009.
[11]Karaipekli, A., and Sarl, A., “Capric–Myristic Acid/Vermiculite Composite as Form-Stable Phase Change Material for Thermal Energy Storage,” Solar Energy, Vol. 83, pp.323-332, 2009.
[12]Chen, C. Z, Wang, L. G., and Huang, Y., “Morphology and Thermal Properties of Electrospun Fatty Acids/Polyethylene Terephthalate Composite Fibers as Novel Form-Stable Phase Change Materials,” Solar Energy Materials & Solar Cells, Vol. 92, pp. 1382-1387, 2008.
[13]Alkan, C., Sarl, A., and Karaipekli, A., “Preparation, Characterization, and Thermal Properties of Microencapsulated Phase change Material for Thermal Energy Storage,” Solar Energy Materials & Solar Cells, Vol. 93, pp. 143-147, 2009.
[14]Karaipekli, A., and Sarl, A., “Capric–Myristic Acid/Expanded Perlite Composite as Form-Stable Phase Change Material for Latent Heat Thermal Energy Storage,” Renewable Energy, Vol. 33, pp. 2599-2605, 2008.
[15]Shukla, A., Buddhi, D., and Sawhney, R. L., “Thermal Cycling Test of Few Selected Inorganic and Organic Phase Change Materials,” Renewable Energy, Vol. 33, pp. 2606-2614, 2008.
[16]付英,曾令可,王慧,劉艷春,相變儲能材料在工業餘熱回收領域的應用研究進展,工業爐,2009。
[17]彭佑宇,“石墨烯製備透明導電膜之研究”,碩士論文,國防大學理工學院應用化學及材料科學學系,第1-76頁,2011。
[18]吳宗霖,“奈米碳薄片複合材料之製程與物性分析”,博士論文,機械與航空工程研究所,第1-177頁,2008。
[19]Fukushima, H., “Graphite Nanoreinforcements in Polymer Nanocomposites,” Ph. D. Thesis, Vol. 64, pp. 2343, 2003.
[20]Mills, A., Farid, M., Selman, J. R., and Hallaj, S. A., “Thermal Conductivity Enhancement of Phase Change Materials Using a Graphite Matrix,” Applied Thermal Engineering, Vol. 26, pp.1652-1661, 2006.
[21]沈萬慈、劉英傑、曹乃真、溫詩鑄,膨脹石墨的微觀結構分析,炭素技術,第1-6頁,1996。
[22]劉志雄、曹乃真、沈萬慈、劉英傑,膨脹石墨的多層次結構,華僑大學學報自然科學版,第147頁,2003。
[23]吳宗霖,“奈米碳薄片複合材料之製程與物性分析”,博士論文,機械與航空工程研究所,第1-177頁,2008。
[24]Xiao, M., Feng, B., and Gong, K., “Preparation and Performance of Shape Stabilized Phase Change Thermal Storage Materials with High Thermal Conductivity,” Energy Conversion and Management, Vol. 43, pp. 103-108, 2002.
[25]Kyotani, T., Sonobe, N., and Tomita, A., “Formation of Heighly or Ientated Graphite from Polyacrylonitrile by Using a Two-Dimensional Space Between Montnorillonie Lamellae ,” Nature, pp. 331-333, 1988.
[26]Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., “Electric Field Effect in Atomically Thin Carbon Films,” Science, Vol. 306, pp. 666-669, 2004.
[27]Meyer, J. C., Geim, A. K., Katsnelson, M. I., and et. al., “The Structure of Supended Grapheme Sheets,” Nature, Vol. 446, pp. 60-63, 2007.
[28]Ishigami, M. J., Chen, H. W., Cullen, W. G., Fuhrer, M. S., and Williams, E. D., “Atomic Structure of Graphene on SiO2 ,” Nano Letters, Vol. 7, pp. 1643-1648, 2007.
[29]http://www.encyclopedia.thefreedictionary.com.
[30]Iijima, S., “Helical Microtubules of Graphitic Carbon”, Nature, Vol. 354, pp. 56-58, 1991.
[31]Endo, M., Takeuchi, K., Igarashi, S., Kobori, K., Shiraishi, M., and Kroto, H. W., “The Production and Structure of Pyrolytic Carbon Nanotubes (PCNTs),” Journal of Physics and Chemistry of Solids, Vol. 54, pp. 1841-1848, 1993.
[32]曲遠方,功能陶瓷材料,曉園出版社,2006
[33]Zhu, L. et al, “Hydrothermal Hot-Pressing Induced Phase Transition in Hexagonal Boron Nitride,” Solid State Sciences, Vol. 11, pp. 1283-1287, 2009.
[34]Raman, C., Meneghetti, P., “Boron Nitride Finds New Applications in Thermoplastic Compounds,” Plastics Additives & Compounding, Vol. 10, pp. 26-29, 2008.
[35]http://zh.wikipedia.org
[36]G. A. Slack, R. A. Tanzilli, R. O. Pohl and J. W. Vandersande, J. Phys. Chem. Soli., Vol. 48, pp. 641-642, 1987.
[37]汪建民,陶瓷技術手冊,中華民國科技發展協進會,第781-783頁,1994。
[38]林益正,氮化鋁製程與性能之研究,碩士論文,國立臺灣科技大學機械工程系,2005。
[39]陳麗如、張雅淇、張居欣、李昭仁,建築外殼結構之潛熱熱控技術,工業材料雜誌262期,第127-133頁,2008。
[40]鄭立輝,盛奎龍,潘金亮,石油蠟的生產及加工,化學工業出版社
[41]Zhang, Z., and Fang, X ., “Study on Paraffin/Expanded Graphite Composite Phase Chamge Thermal Energy Storage Material,” Applied Thermal Engineering, Vol. 47, pp. 303-310, 2006.
[42]Ahmet, S., and Ali, K ., “Thermal Conductivity and Latent Heat Thermal Energy Storage Characteristics of Paraffin/Expanded Graphite Composite as Phase Change Material,” Applied Thermal Engineering, Vol. 27, pp. 1271-1277, 2007.
[43]Wang, X., Yang, X., Fang, Y., Ding, J., and Yan, J., “Enhanced Thermal Conductivity and Thermal Performance of Form-Stable Composite Phase Change Materials by Using β-Aluminum Nitride,” Applied Energy, Vol. 86, pp. 1196-1200, 2009.
[44]Bae, J., Kim, W., and Cho, S., “The Properties of AlN-Flled Epoxy Molding Compounds by the Effects of Fller Size Distribution,” Journal of Materials Science, Vol. 35, pp. 5907-5913, 2000.
[45]Li, T., and Hsu, S., “Enhanced Thermal Conductivity of Polyimide Films Via a Hybrid of Micro-And Nano-Sized Boron Nitride,” Journal of Physical Chemistry B, Vol. 114, pp. 6825-6829, 2010.
[46]Xiang, J., and Drzal, L. T., “Investigation of Exfoliated Graphite Nanoplatelets (xGnP) in Improving Thermal Conductivity of Paraffin Wax Based Phase Change Material,” Solar Energy Materials & Solar Cells, Vol. 95, pp. 1811-1818, 2011.
[47]Lee, G., Park, M., Kim, J., Lee,J., and Yoon, H., “Enhanced Thermal Conductivity of Polymer Composites Flled with Hybrid Fller,” Composites: Part A , Vol. 37, pp. 727-734, 2006.
[48]Yunsheng, X., and Chung, D. D. L., “Increasing the Thermal Conductivity of Boron Nitride and Aluminum Nitride Particle Epoxy-Matrix Composites by Particle Surface Treatments,” Composite Interface, Vol. 7, No. 4, pp. 243-256, 2000.
[49]Teng, C. C., Ma, C. C., Chiou, K. C., and Lee, T. M., “Synergetic Effect of Thermal Conductive Properties of Epoxy Composites Containing Functionalized Multi-Walled Carbon Nanotubes and Aluminum Nitride,” Composites: Part B, Vol. 43, pp. 265-271, 2012.
[50]Nagai, H., Rossignol, F., Nakata, Y., Tsurue, T., Suzuki, M., and Okutani, T., “Thermal Conductivity Measurement of Liquid Materials by a Hot-Disk Method in Short-Duration Microgravity Environments,” Materials Science and Engineering A, Vol. 276, pp.117-123, 2000.
[51]Zhang, Y., and Binner, J., “Hydrolysis Process of a Surface Treated Aluminum Nitride Powder-a FTIR Study,” J Mater Sci Lett, Vol. 21, pp. 803-805, 2002.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top