(44.192.70.216) 您好!臺灣時間:2021/05/09 19:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:林維仁
研究生(外文):Lin wei-jen
論文名稱:分離式霍普金森壓桿試驗之應變量測及其應用於脆性材料適用性探討
論文名稱(外文):Strain Measurements and Deformation Behavior of Brittle Material in the Split-Hopkinsion-pressure-bar Experiment
指導教授:李宏輝李宏輝引用關係
指導教授(外文):Hung-Hui Li
口試委員:趙振宇王泰典陳國賢李宏輝
口試日期:2014-05-07
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:軍事工程碩士班
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:179
中文關鍵詞:霍普金森壓桿應變量測應力加載率高速攝影機
外文關鍵詞:Split Hopkinson Pressure BarStrain measurementsStress rateHigh speed camera
相關次數:
  • 被引用被引用:9
  • 點閱點閱:639
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:0
霍普金森壓桿(Split Hopkinson Pressure Bar, SHPB)最初應用於金屬材料,因具有試驗儀器構造簡單、操作方便迅速等優點,於20世紀末引入岩石、陶瓷及混凝土等脆性材料;目前常見的研究多著重在材料強度與應變率間關係,對於材料的變形性較少探討,而傳統的SHPB試驗是透過彈性桿與材料間兩端面相對位移計算獲得材料應變,由於脆性材料變形小,受力後即產生破壞,導致應力波的傳遞產生落差,傳統的計算方式是否適用於脆性材料,及採用入射端或透射端計算所衍生的單波法與三波法分析差異,仍有待進一步討論。
本研究採用一定配比及養護程序之石膏砂漿做為脆性材料,透過不同量測與分析方式,與延性材料進行比較,探討脆性材料在SHPB試驗下的變形特性,同時搭配高速攝影機紀錄試體裂隙發展;其次,採用自然岩石進行SHPB試驗,除與脆性材料比較其強度及變形性外,並就其在SHPB試驗條件下之裂隙發展與破壞機制提出觀察與討論。
研究結果顯示,當應力加載率愈大時,材料的動態單壓強度、應變、動態變形模數及柏松比等相對提高,試體兩端的應力平衡相對愈差,當試體破壞程度較低時,採用單波法或三波法分析的應變與應力歷時無太大差異,破壞程度較嚴重時,其差異則趨於明顯,而應變規量測之應變均低於單波法及三波法;此外,脆性材料與不同類別之岩石皆具有不同的裂隙發展過程與破壞產狀。經由試驗結果得知,在試體上黏貼應變規及採用雷射位移計量測彈性桿的位移等方式,確實可以獲得材料之應變,惟雷射位移計須採用訊號較為穩定之機型,同時調整量測位置,以滿足量測之需求。
Split Hopkinson Pressure Bar was initially applied to metallic materials. Recently, this testing method was introduced to the rock and brittle materials, such as ceramics and concrete due to its simple structure and convenience for operation. Lots of studies focused on the relationship between strength and strain rate of materials, but less studies investigated the deformation of the materials. The material strain obtained from traditional SHPB test was calculated by relative shifts between planes of elastic rod and material, and brittle materials were easily damaged, which led to the difference in transmission of stress waves. The issues about if the traditional methods were suitable for brittle materials and the different results obtained from one-wave method and three-wave method should be further discussed.
Certain proportion of the gypsum mortar and maintenance procedures were utilized in this study for preparing brittle materials, and they were compared with ductile materials by difference methods of measurement and analysis to investigate the deformation characteristics of brittle materials under SHPB tests, while using high-speed cameras to record development of specimen fracture. Secondly, natural rocks were underwent SHPB tests, except for comparing strength and deformation with ductile materials, observations and discussions were also being made over development of fracture and mechanism of damage.
The results showed that dynamic uniaxial compression strength, strain, dynamic deformation modulus and Poisson's ratio of materials were improved with the increased stress rate, and stress balance between both planes of the specimen was relatively worse. When the damaged level of specimen was lower, there is no huge difference in duration of strain and stress between one-wave method and three-wave method. Differences were becoming significantly at high damaged level, and the strains measured by strain gage measurements were below one-wave method and three-wave method. In addition, there were different development of fracture and destruction in brittle materials and rocks. The experimental results confirmed that strains of materials can be obtained by using strain gage and laser displacement measurement, while the latter required models with more stable signals and adjusted positions of measurement to meet the measuring requirements.
誌謝
摘要
ABSTRACT
目錄
表目錄
圖目錄
符號說明
1. 緒論
1.1 研究目的與方法
1.2 研究架構與內容
2. 文獻探討
2.1 應變率的物理意義
2.2 動態力學試驗設備
2.3 SHPB之基本假設與原理
2.3.1 SHPB的基本假設
2.3.2 SHPB的基本原理
2.3.3 SHPB的限制條件
2.4 一維波傳理論
2.5 波散效應的影響
2.6 SHPB試驗之相關研究
2.6.1 試驗技術與訊號分析
2.6.2 於脆性材料之應用
2.6.3 應變率對於材料的影響
2.6.4 影像量測技術於SHPB試驗之應用
2.7 綜合討論
3. 試驗規劃
3.1 岩石模擬材料製作、密度試驗及基本力學性質
3.1.1 試體製作及養護
3.1.2 模擬材料物理試驗
3.1.3 基本力學試驗及設備
3.2 動態力學試驗
3.2.1 試體製作
3.2.2 分離式霍普金森壓桿試驗裝置及試驗組數
3.2.3 訊號量測設備
3.3 動態試驗訊號量測
3.3.1 縱波波速
3.3.2 撞擊桿速度
4. 結果及討論
4.1 脆性材料物理性質分析
4.2 脆性材料基本力學試驗
4.3 脆性材料之相似性分析
4.4 SHPB試驗之訊號分析流程與相關分析參數之定義
4.4.1 訊號分析流程與力學參數定義
4.4.2 腔室壓力與應力加載率關係
4.5 金屬材料之動態試驗
4.5.1 力學性質分析
4.5.2 破壞過程影像分析
4.6 脆性材料之動態試驗
4.6.1 應變歷時
4.6.2 應變率歷時
4.6.3 應力歷時
4.6.4 綜合分析
4.7 小結
5. 岩石的SHPB試驗
5.1 試體來源及尺寸
5.2 基本物理及力學性質
5.3 動態試驗結果
5.3.1 應變歷時
5.3.2 應變率歷時
5.3.3 應力歷時
5.3.4 試體破壞與裂隙發展過程
5.3.5 綜合分析
5.4 小結
6. 結論與建議
6.1 結論
6.1.1 應力波形改良成效
6.1.2 動態試驗結果
6.2 建議
6.2.1 量測儀器部分
6.2.2 材料的選擇及試驗
6.2.3 數據處理及分析
參考文獻
附錄A 應力波訊號改善
附錄B 各頻道原始波形
附錄C 脆性材料SHPB試驗相關數據
附錄D 不同基長應變規及黏貼位置試驗結果
附錄E 不同應力加載率之試驗結果
附錄F 碩士論文口試委員意見
自傳

[1]Lindholm, U. S., “Some Experiments with The Split Hopkinson Pressure Bar,” J Mech Phys Solids, Vol. 12, pp. 317–35, 1964.
[2]洪健博,“圍束應力對活性粉混凝土在高應變率下動態力學行為之分析”,碩士論文,國立成功大學土木工程研究所,台南,2008。
[3]John R. and Shah S. P., “Constitutive Modeling of Concrete Under Impact Loading,” Impact: Effects of Fast Transient Loadings, pp. 37-65, 1988.
[4]李夕兵、古德生,岩石衝擊動力學,中南工業大學出版社,長沙中國,1994。
[5]Parry D. J., Dixon P. R., Hodson S., and AI-Maliky N., “Stress equilibrium effects within Hopkinson bar specimens,”Journal de Physique Ⅲ, Vol. 4, pp.C8:107–112, 1994.
[6]Subhash G. and Ravichandran G., ”Split-Hopkinson Pressure Bar Testing of Ceramics”, Mechanical Testing and Evaluation, Vol. 8, pp. 497–504, 2000.
[7]豐平、張慶明、陳利、姚偉,“SHPB測試中斜坡加載對應力均勻性和恆應變率的影響分析”,北京理工大學學報,第30卷第5期,第513-516頁,北京,2010。
[8]洪亮、李夕兵、馬春德、尹土兵、葉洲元、廖國燕,“岩石動態強度及其應變率靈敏性的尺寸效應研究”,岩石力學與工程學報,第27卷第3期,第526-533頁,湖南長沙,2008。
[9]Muhammad A. K., John H. B., and Dong R., “Misalignment effect in the split Hopkinson pressure bar technique,” International Journal of Impact Engineering, Vol.47, pp.60–70, 2012.
[10]宋力、胡時勝,“SHPB數據處理中的二波法與三波法”,爆炸與衝擊,第25卷第4期,第368-373頁,浙江寧波,2005。
[11]李英雷,胡昌明,王悟,“SHPB實驗數據處理的規範化問題討論”,爆炸與衝擊,第25卷第6期,第553-558頁,四川綿陽,2005。
[12]路守克、史國川、陳俠,“霍普金森桿實驗數據處理程序的設計與實現”,電腦開發與應用,第23卷第9期,第47-48頁,安徽合肥,2010。
[13]常列珍、張治民,“SHPB實驗技術及其發展”,機械管理開發,第5期,第29-31頁,山西太原,2006。
[14]Zhou Y. X., Xia K., Li X. B., Li H. B., Ma G. W., Zhao J., Zhou Z. I.,and Dai F., “Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials,” International Journal of Rock Mechanics & Mining Sciences, Vol.49, pp.105–112, 2013.
[15]Huang S., Feng X. T.,and Xia K., “A dynamic punch method to quantify the dynamic shear strength of brittle solids,” Review of scientific instruments, Vol.82 Issue 5, 053901, 2011.
[16]Dai F., Xia K.,and Tang L., “Rate dependence of the flexural tensile strength of Laurentian granite,” International Journal of Rock Mechanics & Mining Sciences, Vol.47, pp.469–475, 2010.
[17]Chen R., Xia K., Dai F., Lu F.,and Luo S. N., “Determination of dynamic fracture parameters using a semi-circular bend technique in split Hopkinson pressure bar testing, ” Engineering Fracture Mechanics, Vol.76, pp.1268–1276, 2009.
[18]Dai F., Chen R., Iqbal M. J.,and Xia K., “Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters,” International Journal of Rock Mechanics & Mining Sciences, Vol.47, pp.606–613, 2010.
[19]Dai F., Xia K., Zheng H.,and Wang Y. X., “Determination of dynamic rock Mode-I fracture parameters using cracked chevron notched semi-circular bend specimen,” Engineering Fracture Mechanics, Vol.78, pp.2633–2644, 2011.
[20]吳嘉祥、陳正光,機械元件設計,第八版,高立圖書有限公司,台北,2006。
[21]Dai F., Huang S., Xia K. W.,and Tan Z. Y., “Some Fundamental Issues in Dynamic Compression and Tension Tests of Rocks Using Split Hopkinson Pressure Bar, ” Rock Mech Rock Eng, Vol.43, pp.657–666, 2010.
[22]陳剛、陶俊林、陳忠富,“SHPB的徑向慣性效應修正”西南科技大學學報,第23卷第2期,第80-84頁,2008。
[23]宋力、胡時勝,“SHPB測試中的均勻性問題及恒應變率”,爆炸與衝擊,第25卷第3期,第207-216頁,安徽合肥,2005。
[24]Gama B. A., Lopatnikov S. L.,and Gillespie J. W., “Hopkinson bar experimental technique: a critical review, ”Applied Mechanics Reviews, Vol.57, pp.223–250, 2004.
[25]洪亮、李夕兵、馬春德、尹土兵、葉洲元、廖國燕,“岩石動態強度及其應變率靈敏性的尺寸效應研究”,岩石力學與工程學報,第27卷第3期,第526-533頁,湖南長沙,2008。
[26]許琦、王勝昌、陳建仁,“岩石三軸SHPB試驗儀之研發”,岩盤工程研討會論文集,第777-784頁,高雄,2008。
[27]李啟光,“應變率對岩石力學行為影響之研究”,碩士論文,國防大學理工學院環境資訊及工程學系,桃園,2012。
[28]郭士銘,“岩石材料動態力學性質與微觀組構關係之研究”,碩士論文,國防大學理工學院環境資訊及工程學系,桃園,2013。
[29]劉佳濠,“同步聲-光非破壞檢測於應變率對岩材動-靜力學之研究”,碩士論文,國立台灣大學工學院土木工程學研究所,台北,2013。
[30]Zhao Y. H. and Zhao J., “Compressive Strength of Rock Materials at Different Strain Rate,” Strength Theory:Application, Development & Prospects for 21st Century, pp.497–504, 1998.
[31]李海波、王建偉、李俊如、周青春、劉亞群,“單軸壓縮下軟岩的動態力學特性試驗研究”,岩土力學,第25卷第1期,第1-4頁,河南開封,2004。
[32]翟越、馬國偉、趙均海、胡昌明,“花崗岩和混凝土在單軸衝擊壓縮荷載下的動態性能比較”,岩石力學與工程學報,第26卷第4期,新加坡,第762-768頁,2007。
[33]周子龍、李夕兵、岩小明,“岩石SHPB測試中試樣恆應變率變形的加載條件”,岩石力學與工程學報,第28卷第12期,第2445-2452頁,江西貴溪,2009。
[34]Li W. M. and Xu J. Y., “Mechanical properties of basalt fiber reinforced geopolymeric concrete under impact loading,” Materials Science and Engineering, A 505, pp.178–186, 2009.
[35]朱晶晶、李夕兵、宮風強、王世鳴、賀威,“衝擊載荷作用下砂岩的動力學特性及損傷規律”,中南大學學報,第43卷第7期,第2701-2707頁,湖南長沙,2012。
[36]劉建秀、高紅霞、韓長生、魏秀蘭,、高應變率下Cu-P/M摩擦材料正向和反向應變率效應“,機械科學與技術,第24卷第2期,第232-247頁,2005。
[37]Zhang Q.B. and Zhao J., “Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads,” International Journal of Rock Mechanics & Mining Sciences, Vol.60, pp.523–439, 2013.
[38]Barton, N. R., “A Low Strength Material for Simulation of the Mechanical Properties of Intact Rock in Rock Mechanics Models,” Proc. of the 2nd Cong. Of ISRM, Beograd, pp.3–15, 1970.
[39]Moon H. and Hucka. V. J., “Investigation of Equivalient Material for Physical Modelling of Utah Coal Seams,” Proc. 26th Symp. On Rock Mech., Rapid City, pp.331–367, 1986.
[40]Goodman, R. E., “Introduction to Rock Mechanics.” John Wiley and Sons, pp.50-95, 1980.
[41]Deere, D. U., “Rock Mechanics in Engineering Practice-Geological Considerations,” Edited by Stagg and Zienkiewicz John, Wiley Publishing Company, 1969.
[42]Kumar A. “The effect of stress rate and temperature on the strength of basalt and granite,” Geophysics, Vol. 33,No. 3, pp. 501–510, 1968.
[43]Xue P., Naveed Iqbal, Liao H.J., Wang B.,and Li Y.L. “Experimental study, on strain rate sensitivity of ductile porous irons,” International Journal of Impact Engineering, Vol.48, pp.82–86, 2012.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔