跳到主要內容

臺灣博碩士論文加值系統

(98.84.25.165) 您好!臺灣時間:2024/11/11 16:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:董修齊
研究生(外文):Siou-Ci Dong
論文名稱:金屬觸媒催化共煉含食用油之柴油
論文名稱(外文):Metal Catalysts for Co-processing Cooking-Oil With Petroleum Stock
指導教授:張仁瑞
指導教授(外文):Jen-Ray Chang
口試委員:陳慧英李志甫許火順張仁瑞
口試委員(外文):Huey-Ing ChenJyh-Fu LeeHwo-Shuenn SheuJen-Ray Chang
口試日期:2014-07-12
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:140
中文關鍵詞:加氫脫氧積碳抗硫性鈀-鉑雙金屬交互作用
外文關鍵詞:hydrodeoxygenationcokesulfur resistancePd-Pt bimetallic interactions
相關次數:
  • 被引用被引用:2
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要之目的為開發用於氫化常壓蒸餾油(AOD)及同時對廢食用油進行加氫脫氧之粒狀沸石擔體鉑觸媒。其沸石擔體是以氧化矽或氧化鋁黏合劑黏合HY型沸石,經擠壓成型所得。
由於原油進料組成中普遍含有硫份及芳香烴,因此觸媒設計之主要任務是減緩由積碳及硫中毒而造成之觸媒失活。在常壓、500oC之條件下於一連續式固定床反應系統中測試觸媒進行甲苯不均化反應。我們發現相較於氧化鋁黏合劑,以氧化矽為黏合劑之觸媒其積碳生成量相對較少,觸媒老化速率也較緩慢。根據NH3-程溫脫附及程溫氧化所得積碳之特性分析結果,針對氧化矽黏合劑相對低積碳的形成,其主要是由於在觸媒造粒過程中形成較少的弱酸基。將Pt(前驅物為H2PtCl6)含浸於HY型沸石粒狀擔體上,經乾燥、煅燒及加氫還原製備鉑觸媒。另外亦添加第二金屬鈀至鉑觸媒上以增強鉑金屬欉之抗硫性。以tetralin 測試觸媒之氫化能力,而分別摻混20wt%食用油以及200ppm硫份測試觸媒之脫氧能力及抗硫性。於一連續式固定床反應系統以480psig、300oC 、WHSV=4h-1及氫油比為5.8條件下進行觸媒的抗硫性能測試;而加氫脫氧反應測試於連續式固定床反應系統以400psig、240-360oC 、WHSV=0.6h-1及氫油比為5.31條件下進行。除了NH3-TPD 及 coke-TPO特性分析技術,沸石結構、金屬欉形態及觸媒表面特性則分別藉由XRPD、EXAFS及FT-IR進行分析。綜合催化性能測試得到以下幾點結論:
1. 脂肪酸酯的催化氫解會導致paraffin的生成,而氧會與tetralin反應形成含氧化合物。
2. 鉑觸媒的抗硫性與鉑金屬欉形態有關,其中以氧化矽(Ludox)為黏合劑所製備之鉑觸媒有較高的抗硫性及較低的積碳生成速率。
3. 添加鈀至鉑觸媒可以改善其抗硫性,其中鈀前驅物及前處理條件對Pd-Pt交互作用有很重大的影響,Pd-Pt交互作用可由Pt-Pt相位校正後之傅立葉轉換EXAFS譜圖加以解釋。

The main goal of this study is to develop pellet zeolite-supported Pt catalysts for hydrogenation of atmospheric distillation Oil (ADO) concomitant with hydro-deoxygenation of waste cooking-oil. The zeolite support was pelletized by binding HY zeolite particles with silica or alumina binder and following with extrudation. Because of aromatics and sulfur containing in feed stock, the main tasks of catalyst design is to alleviate catalyst deactivation caused by coke-deposition and sulfur-poisoning. By testing the catalyst by toluene disproportionation reaction at atmospheric pressure and 500 oC in a continuous fixed bed reaction system, we found that the catalyst prepared from silica binder exhibit relatively less coke formation and thus slow deactivation rate as opposed to alumina binder. Characterized the catalysts by NH3 temperature programmed desorption (TPD) and the coke by temperature programmed oxidation (TPO), the relatively low coke formation for silica binder is mainly due to less weak acid sites formation in catalyst pellization process. The Pt catalyst was prepared by incorporating Pt precursor (H2PtCl6) into HY pellet and following by drying, calcination, and hydrogen reduction. Pd was also added to the Pt catalyst for the comparison the sulfur resistance of the catalysts. Tetralin was used as a model compound for testing hydrogenation activity, while 200 ppm sulfur containing compound and 20 wt% cooking oil were used for testing sulfur resistance and for hydro-deoxygenation activity. The test reaction of sulfur resistance was conducted and carried out in a continuous fixed bed reaction system at 480psig, 300 oC, WHSV= 4h-1, and H2/Oil=5.8; The test reaction of hydro-deoxygenation activity was conducted and carried out in a continuous fixed bed reaction system at 400psig, 240-360 oC, WHSV= 0.6h-1, and H2/Oil=5.31. Besides NH3-TPD and coke-TPO, zeolite structure, morphology of metal clusters and surface properties were characterized by XRPD, EXAFS, and FT-IR, respectively. Combined with catalytic performance tests, the following conclusions were reached:
1. Catalytic hydrogenolysis of fatty acid ester results in a formation of paraffinc compounds while oxygen react with tetralin to form oxygen-containing compounds.
2. Sulfur resistance of Pt catalysts is related to the morphology of Pt clusters and the catalysts prepared from Ludox binder exhibit higher sulfur resistance and lower coke formation rate.
3. The sulfur resistance of Pt catalysts can be improved by the addition of Pd to the catalysts, whereas Pd precursors and pretreatment conditions greatly influence the formation of Pd-Pt interactions; Pd-Pt interactions were examined by Pt-Pt corrected Fourier transform of EXAFS spectra.

圖目錄 XI
表目錄 XIV
第一章 緒論 1
1.1研究背景 1
1.2觸媒簡介 6
1.2.1鉑 8
1.2.2 沸石 9
1.2.3 觸媒失活 13
1.3固體酸之種類與酸性質 16
1.3.1 固體酸 16
1.3.2使用沸石當作固體酸 18
1.3.3 測量酸的強度與濃度 19
1.3.4 分辦Bronsted 和Lewis Acidity 19
1.4 研究動機與目的 20
第二章 研究方法與步驟 27
2.1. 前言 27
2.2. 實驗規劃 30
2.2.1 加氫脫氧反應實驗流程 30
2.2.2甲苯不均化反應實驗流程 31
2.2.3 加氫飽和反應實驗流程 32
2.3. 觸媒製備 33
2.3.1加氫脫氧反應觸媒製備 33
2.3.2 甲苯不均化反應觸媒製備 33
2.3.3 加氫飽和反應觸媒製備 34
2.4. 觸媒性能測試實驗 38
2.4.1 反應設備 38
2.4.2 反應性測試 44
2.5. 產物分析與觸媒特性分析方法 49
2.5.1產物分析 49
2.5.2 氣相層析併質譜測定法(GC-Mass) 55
2.5.3 傅立葉轉換-紅外線光譜分析 (Fourier Transform Infrared;FT-IR) 57
2.5.4 X光吸收光譜分析 (Analysis of X-ray Absorption Spectrum;XAS) 58
2.5.5粉末X光繞射 (Powder X-ray Diffraction;PXRD) 68
2.5.6 BET表面積測定儀 70
2.5.7 TPD程溫脫附及TPO 程溫氧化(Temperature Programmed Desorption & Temperature Programmed Oxidation) 72
第三章 結果與討論 74
3.1. 前言 74
3.2觸媒特性分析及反應結果 74
3.2.1加氫脫氧反應結果 74
3.2.2甲苯不均化反應觸媒之特性分析 81
3.2.3加氫飽和觸媒之特性分析及反應結果 102
第四章 總結與未來展望 113
4.1總結 113
4.2 未來展望 115
參考文獻 116

[1] 經濟部能源局
http://web3.moeaboe.gov.tw/ECW/populace/web_book/WebReports.aspx?book=M_CH&menu_id=142
[2] U.S. Energy InformationAdministration
http://www.eia.gov/todayinenergy/detail.cfm?id=7110
[3] UOP, FCC, Unicracking, and VGO Unionfining processes are the keys to cost-effective upgrading of Vacuum Gas Oil.
http://www.uop.com/processing-solutions/refining/vgo-fuel-oil-conversion/#fcc
[4] Heavy cycle oil slurry, http://www.lyondellbasell.com/techlit/techlit/REACH_docs/DistHeavyCatCrack.pdf
[5] Light cycle oil, http://www.lyondellbasell.com/techlit/techlit/refining/REV-AP2050_LIGHT_CYCLE_OIL_LCO.pdf
[6] Directive 2009/30/EC of the European Parliament and of the Council,23.04.2009, amending Directive 98/70/EC relating to the quality of petrol and diesel fuels, Official Journal of the European Communities, L140/88, 5.6.2009
[7] 顏炳文,張志成,洪正宗,李蕙珍;「輕循環油摻配低硫柴油進行深度加氫脫硫反應研究」;中工高雄會刊;第20卷;32期;2012。
[8] T. Nielsen, “Traffic contribution of polycyclic aromatic hydrocarbons in the center of a large city,” Atmospheric Environment, vol. 30, pp. 3481-3490, 10// 1996.
[9] The Agency for Toxic Substances and Disease Registry
http://www.atsdr.cdc.gov/tfacts69.pdf
[10] G. Grimmer, “Environmental Carogens: Polycyclic Aromatic Hydrocarbons,” Environmental Science Technology 24:1581-1585//1983.
[11] J. Tuominen, S. Salomaa, H. Pyysalo, E. Skytta, L. Tikkanen, T. Nurmela, et al., “Polynuclear aromatic compounds and genotoxicity in particulate and vapor phases of ambient air: effect of traffic, season, and meteorological conditions,” Environmental Science & Technology, vol. 22, pp. 1228-1234, 10/01/ 1988.
[12] Pines, H., “The Chemistry of Catalyst Hydrocarbon Conversions”, Academic Press, New York, //1981
[13] C. H. Bartholomew, “Mechanisms of catalyst deactivation,” Applied Catalysis A: General, vol. 212, pp. 17-60, 4/30/ 2001.
[14] Ullman, T. L., “Investigation of the Fuel Composition on Heavy-Duty Diesel Engine Emission”, SAE (Society of Automotive Engineering, Inc.) Paper 892072 (1989)
[15] 吳榮宗;「工業觸媒概論」;民國七十八年。
[16] P. Reyes, G. Pecchi, M. Morales, and J. L. G. Fierro, “The nature of the support and the metal precursor on the resistance to sulphur poisoning of Pt supported catalysts,” Applied Catalysis A: General, vol. 163, pp. 145-152, 12/5/ 1997.
[17] Z. Paál, K. Matusek, and M. Muhler, “Sulfur adsorbed on Pt catalyst: its chemical state and effect on catalytic properties as studied by electron spectroscopy and n-hexane test reactions,” Applied Catalysis A: General, vol. 149, pp. 113-132, 1/23/ 1997.
[18] T.-C. Yu and H. Shaw, “The effect of sulfur poisoning on methane oxidation over palladium supported on γ-alumina catalysts,” Applied Catalysis B: Environmental, vol. 18, pp. 105-114, 9/21/ 1998.
[19] Y. Shiraishi, K. Tachibana, T. Hirai, and I. Komasawa, “Photochemical Production of Biphenyls from Oxidized Sulfur Compounds Obtained by Oxidative Desulfurization of Light Oils,” Energy & Fuels, vol. 17, pp. 95-100, 2003/01/01 2002.
[20] H. Mei, B. W. Mei, and T. F. Yen, “A new method for obtaining ultra-low sulfur diesel fuel via ultrasound assisted oxidative desulfurization,” Fuel, vol. 82, pp. 405-414, 3// 2003.
[21] C. Song and X. Ma, “New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization,” Applied Catalysis B: Environmental, vol. 41, pp. 207-238, 3/10/ 2003.
[22] W. Zhang, P. G. Smirniotis, M. Gangoda, and R. N. Bose, “Brønsted and Lewis Acid Sites in Dealuminated ZSM-12 and β Zeolites Characterized by NH3-STPD, FT-IR, and MAS NMR Spectroscopy,” The Journal of Physical Chemistry B, vol. 104, pp. 4122-4129, 05/01/ 2000.
[23] 游太平;「淺談觸媒積碳現象」;石油季刊;第40卷;第一期;2004。
[24] J. R. Chang, S. L. Chang, and T. B. Lin, “γ-Alumina-Supported Pt Catalysts for Aromatics Reduction: A Structural Investigation of Sulfur Poisoning Catalyst Deactivation,” Journal of Catalysis, vol. 169, pp. 338-346, 7/1/ 1997.
[25] J. F. Chiou, Y. L. Huang, T. B. Lin, and J. R. Chang, “Aromatics Reduction over Supported Platinum Catalysts. 1. Effect of Sulfur on the Catalyst Deactivation of Tetralin Hydrogenation,” Industrial & Engineering Chemistry Research, vol. 34, pp. 4277-4283, 1995/12/01 1995.
[26] J. R. Chang and S. L. Chang, “Catalytic Properties of γ-Alumina-Supported Pt Catalysts for Tetralin Hydrogenation: Effects of Sulfur-Poisoning and Hydrogen Reactivation,” Journal of Catalysis, vol. 176, pp. 42-51, 5/15/ 1998.
[27] J. Abe, X. Ma, and C. Song, “Low-temperature hydrogenation of aroamtics over noble metal catalysts in the presence of sulfur compound,” Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem, vol. 48, p. 609// 2003.
[28] V. R. Choudhary, P. Devadas, A. K. Kinage, and M. Guisnet, “Influence of binder on the acidity and performance of H-Gallosilicate (MFI) zeolite in propane aromatization,” Applied Catalysis A: General, vol. 162, pp. 223-233, 11/18/ 1997.
[29] M. Baghalha, M. Mohammadi, and A. Ghorbanpour, “Coke deposition mechanism on the pores of a commercial Pt–Re/γ-Al2O3 naphtha reforming catalyst,” Fuel Processing Technology, vol. 91, pp. 714-722, 7// 2010.
[30] S. Purnell, B. Gates, and J. Chang, “NaY zeolite-supported rhenium-platinum catalysts prepared from organometallic precursors: evidence of the Re-Pt interaction from infrared and x-ray absorption spectroscopies,” The Journal of Physical Chemistry, vol. 97, pp. 4196-4205//1993.
[31] 詹朝安;碩士論文;「高抗硫性加氫飽和觸媒之開發」;民國八十四年。
[32] 王佳瑋;碩士論文;「異構化鉑觸媒硫中毒之研究:黏著劑與沸石矽鋁比之效應」;民國一百零二年。
[33] 莊棨鈞;碩士論文;「操作溫度及觸媒擔體對支撐式鉑觸媒抗硫性之影響」;民國八十六年。
[34] J. F. Lee, “Application of X-ray Absorption Sepectroscopy to Catalyst Characterization”, Chemistry, vol. 53, pp. 280 //1995
[35] 汪建民;「材料分析」;第11~72頁;民全書局;民國九十四
年。
[36] D. Kubička, N. Kumar, P. Mäki-Arvela, M. Tiitta, V. Niemi, T. Salmi, et al., “Ring opening of decalin over zeolites: I. Activity and selectivity of proton-form zeolites,” Journal of Catalysis, vol. 222, pp. 65-79, 2/15/ 2004.
[37] T. M. Sankaranarayanan, M. Banu, A. Pandurangan, and S. Sivasanker, “Hydroprocessing of sunflower oil–gas oil blends over sulfided Ni–Mo–Al–zeolite beta composites,” Bioresource Technology, vol. 102, pp. 10717-10723, 11// 2011.
[38]趙陽,孟祥堃,王宣,龍湘云,閔恩澤;「棕櫚油加氫製備高十六烷值柴油組分」;石油學報(石油加工);第27卷;第4期;2011。
[39] 李志甫譯;「X-射線法」;第65~138頁;高立圖書有限公司; 2001。
[40] K. Elaiopoulos, T. Perraki, and E. Grigoropoulou, “Monitoring the effect of hydrothermal treatments on the structure of a natural zeolite through a combined XRD, FTIR, XRF, SEM and N2-porosimetry analysis,” Microporous and Mesoporous Materials, vol. 134, pp. 29-43, 10// 2010.
[41] D.W. Breck, “Zeolite molecular sieves,” John Wiley & Sons, Inc.
[42] W. Lutz, H. Toufar, D. Heidemann, N. Salman, C. H. Rüscher, T. M. Gesing, et al., “Siliceous extra-framework species in dealuminated Y zeolites generated by steaming,” Microporous and Mesoporous Materials, vol. 104, pp. 171-178, 8/23/ 2007.
[43] G. F. Froment and K. B. Bischoff, “Chemical reactor analysis and design, ” John Wiley & Sons, Inc.
[44] D. Mores, J. Kornatowski, U. Olsbye, and B. M. Weckhuysen, “Coke Formation during the Methanol‐to‐Olefin Conversion: In Situ Microspectroscopy on Individual H‐ZSM‐5 Crystals with Different Brønsted Acidity,” Chemistry-A European Journal, vol. 17, pp. 2874-2884// 2011.
[45] S. K. Sahoo, N. Viswanadham, N. Ray, J. K. Gupta, and I. D. Singh, “Studies on acidity, activity and coke deactivation of ZSM-5 during n-heptane aromatization,” Applied Catalysis A: General, vol. 205, pp. 1-10, 1/8/ 2001.
[46] K. Moljord, P. Magnoux, and M. Guisnet, “Coking, aging and regeneration of zeolites XV. Influence of the composition of HY zeolites on the mode of formation of coke from propene at 450°C,” Applied Catalysis A: General, vol. 122, pp. 21-32, 2/2/ 1995.
[47] M. Boltz, A. Blanc, G. Laugel, P. Pale, and B. Louis, “Heterogenization of [Cu(2,2′-bpy)Cl2] and [Cu(1,10-phen)Cl2] on Polyoxometalates: New Catalysts for the Selective Oxidation of Tetralin,” Chinese Journal of Catalysis, vol. 32, pp. 807-811, 5// 2011.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top