[1] 經濟部能源局
http://web3.moeaboe.gov.tw/ECW/populace/web_book/WebReports.aspx?book=M_CH&menu_id=142
[2] U.S. Energy InformationAdministration
http://www.eia.gov/todayinenergy/detail.cfm?id=7110
[3] UOP, FCC, Unicracking, and VGO Unionfining processes are the keys to cost-effective upgrading of Vacuum Gas Oil.
http://www.uop.com/processing-solutions/refining/vgo-fuel-oil-conversion/#fcc
[4] Heavy cycle oil slurry, http://www.lyondellbasell.com/techlit/techlit/REACH_docs/DistHeavyCatCrack.pdf
[5] Light cycle oil, http://www.lyondellbasell.com/techlit/techlit/refining/REV-AP2050_LIGHT_CYCLE_OIL_LCO.pdf
[6] Directive 2009/30/EC of the European Parliament and of the Council,23.04.2009, amending Directive 98/70/EC relating to the quality of petrol and diesel fuels, Official Journal of the European Communities, L140/88, 5.6.2009
[7] 顏炳文,張志成,洪正宗,李蕙珍;「輕循環油摻配低硫柴油進行深度加氫脫硫反應研究」;中工高雄會刊;第20卷;32期;2012。
[8] T. Nielsen, “Traffic contribution of polycyclic aromatic hydrocarbons in the center of a large city,” Atmospheric Environment, vol. 30, pp. 3481-3490, 10// 1996.
[9] The Agency for Toxic Substances and Disease Registry
http://www.atsdr.cdc.gov/tfacts69.pdf
[10] G. Grimmer, “Environmental Carogens: Polycyclic Aromatic Hydrocarbons,” Environmental Science Technology 24:1581-1585//1983.
[11] J. Tuominen, S. Salomaa, H. Pyysalo, E. Skytta, L. Tikkanen, T. Nurmela, et al., “Polynuclear aromatic compounds and genotoxicity in particulate and vapor phases of ambient air: effect of traffic, season, and meteorological conditions,” Environmental Science & Technology, vol. 22, pp. 1228-1234, 10/01/ 1988.
[12] Pines, H., “The Chemistry of Catalyst Hydrocarbon Conversions”, Academic Press, New York, //1981
[13] C. H. Bartholomew, “Mechanisms of catalyst deactivation,” Applied Catalysis A: General, vol. 212, pp. 17-60, 4/30/ 2001.
[14] Ullman, T. L., “Investigation of the Fuel Composition on Heavy-Duty Diesel Engine Emission”, SAE (Society of Automotive Engineering, Inc.) Paper 892072 (1989)
[15] 吳榮宗;「工業觸媒概論」;民國七十八年。
[16] P. Reyes, G. Pecchi, M. Morales, and J. L. G. Fierro, “The nature of the support and the metal precursor on the resistance to sulphur poisoning of Pt supported catalysts,” Applied Catalysis A: General, vol. 163, pp. 145-152, 12/5/ 1997.
[17] Z. Paál, K. Matusek, and M. Muhler, “Sulfur adsorbed on Pt catalyst: its chemical state and effect on catalytic properties as studied by electron spectroscopy and n-hexane test reactions,” Applied Catalysis A: General, vol. 149, pp. 113-132, 1/23/ 1997.
[18] T.-C. Yu and H. Shaw, “The effect of sulfur poisoning on methane oxidation over palladium supported on γ-alumina catalysts,” Applied Catalysis B: Environmental, vol. 18, pp. 105-114, 9/21/ 1998.
[19] Y. Shiraishi, K. Tachibana, T. Hirai, and I. Komasawa, “Photochemical Production of Biphenyls from Oxidized Sulfur Compounds Obtained by Oxidative Desulfurization of Light Oils,” Energy & Fuels, vol. 17, pp. 95-100, 2003/01/01 2002.
[20] H. Mei, B. W. Mei, and T. F. Yen, “A new method for obtaining ultra-low sulfur diesel fuel via ultrasound assisted oxidative desulfurization,” Fuel, vol. 82, pp. 405-414, 3// 2003.
[21] C. Song and X. Ma, “New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization,” Applied Catalysis B: Environmental, vol. 41, pp. 207-238, 3/10/ 2003.
[22] W. Zhang, P. G. Smirniotis, M. Gangoda, and R. N. Bose, “Brønsted and Lewis Acid Sites in Dealuminated ZSM-12 and β Zeolites Characterized by NH3-STPD, FT-IR, and MAS NMR Spectroscopy,” The Journal of Physical Chemistry B, vol. 104, pp. 4122-4129, 05/01/ 2000.
[23] 游太平;「淺談觸媒積碳現象」;石油季刊;第40卷;第一期;2004。[24] J. R. Chang, S. L. Chang, and T. B. Lin, “γ-Alumina-Supported Pt Catalysts for Aromatics Reduction: A Structural Investigation of Sulfur Poisoning Catalyst Deactivation,” Journal of Catalysis, vol. 169, pp. 338-346, 7/1/ 1997.
[25] J. F. Chiou, Y. L. Huang, T. B. Lin, and J. R. Chang, “Aromatics Reduction over Supported Platinum Catalysts. 1. Effect of Sulfur on the Catalyst Deactivation of Tetralin Hydrogenation,” Industrial & Engineering Chemistry Research, vol. 34, pp. 4277-4283, 1995/12/01 1995.
[26] J. R. Chang and S. L. Chang, “Catalytic Properties of γ-Alumina-Supported Pt Catalysts for Tetralin Hydrogenation: Effects of Sulfur-Poisoning and Hydrogen Reactivation,” Journal of Catalysis, vol. 176, pp. 42-51, 5/15/ 1998.
[27] J. Abe, X. Ma, and C. Song, “Low-temperature hydrogenation of aroamtics over noble metal catalysts in the presence of sulfur compound,” Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem, vol. 48, p. 609// 2003.
[28] V. R. Choudhary, P. Devadas, A. K. Kinage, and M. Guisnet, “Influence of binder on the acidity and performance of H-Gallosilicate (MFI) zeolite in propane aromatization,” Applied Catalysis A: General, vol. 162, pp. 223-233, 11/18/ 1997.
[29] M. Baghalha, M. Mohammadi, and A. Ghorbanpour, “Coke deposition mechanism on the pores of a commercial Pt–Re/γ-Al2O3 naphtha reforming catalyst,” Fuel Processing Technology, vol. 91, pp. 714-722, 7// 2010.
[30] S. Purnell, B. Gates, and J. Chang, “NaY zeolite-supported rhenium-platinum catalysts prepared from organometallic precursors: evidence of the Re-Pt interaction from infrared and x-ray absorption spectroscopies,” The Journal of Physical Chemistry, vol. 97, pp. 4196-4205//1993.
[31] 詹朝安;碩士論文;「高抗硫性加氫飽和觸媒之開發」;民國八十四年。[32] 王佳瑋;碩士論文;「異構化鉑觸媒硫中毒之研究:黏著劑與沸石矽鋁比之效應」;民國一百零二年。[33] 莊棨鈞;碩士論文;「操作溫度及觸媒擔體對支撐式鉑觸媒抗硫性之影響」;民國八十六年。[34] J. F. Lee, “Application of X-ray Absorption Sepectroscopy to Catalyst Characterization”, Chemistry, vol. 53, pp. 280 //1995
[35] 汪建民;「材料分析」;第11~72頁;民全書局;民國九十四
年。
[36] D. Kubička, N. Kumar, P. Mäki-Arvela, M. Tiitta, V. Niemi, T. Salmi, et al., “Ring opening of decalin over zeolites: I. Activity and selectivity of proton-form zeolites,” Journal of Catalysis, vol. 222, pp. 65-79, 2/15/ 2004.
[37] T. M. Sankaranarayanan, M. Banu, A. Pandurangan, and S. Sivasanker, “Hydroprocessing of sunflower oil–gas oil blends over sulfided Ni–Mo–Al–zeolite beta composites,” Bioresource Technology, vol. 102, pp. 10717-10723, 11// 2011.
[38]趙陽,孟祥堃,王宣,龍湘云,閔恩澤;「棕櫚油加氫製備高十六烷值柴油組分」;石油學報(石油加工);第27卷;第4期;2011。
[39] 李志甫譯;「X-射線法」;第65~138頁;高立圖書有限公司; 2001。
[40] K. Elaiopoulos, T. Perraki, and E. Grigoropoulou, “Monitoring the effect of hydrothermal treatments on the structure of a natural zeolite through a combined XRD, FTIR, XRF, SEM and N2-porosimetry analysis,” Microporous and Mesoporous Materials, vol. 134, pp. 29-43, 10// 2010.
[41] D.W. Breck, “Zeolite molecular sieves,” John Wiley & Sons, Inc.
[42] W. Lutz, H. Toufar, D. Heidemann, N. Salman, C. H. Rüscher, T. M. Gesing, et al., “Siliceous extra-framework species in dealuminated Y zeolites generated by steaming,” Microporous and Mesoporous Materials, vol. 104, pp. 171-178, 8/23/ 2007.
[43] G. F. Froment and K. B. Bischoff, “Chemical reactor analysis and design, ” John Wiley & Sons, Inc.
[44] D. Mores, J. Kornatowski, U. Olsbye, and B. M. Weckhuysen, “Coke Formation during the Methanol‐to‐Olefin Conversion: In Situ Microspectroscopy on Individual H‐ZSM‐5 Crystals with Different Brønsted Acidity,” Chemistry-A European Journal, vol. 17, pp. 2874-2884// 2011.
[45] S. K. Sahoo, N. Viswanadham, N. Ray, J. K. Gupta, and I. D. Singh, “Studies on acidity, activity and coke deactivation of ZSM-5 during n-heptane aromatization,” Applied Catalysis A: General, vol. 205, pp. 1-10, 1/8/ 2001.
[46] K. Moljord, P. Magnoux, and M. Guisnet, “Coking, aging and regeneration of zeolites XV. Influence of the composition of HY zeolites on the mode of formation of coke from propene at 450°C,” Applied Catalysis A: General, vol. 122, pp. 21-32, 2/2/ 1995.
[47] M. Boltz, A. Blanc, G. Laugel, P. Pale, and B. Louis, “Heterogenization of [Cu(2,2′-bpy)Cl2] and [Cu(1,10-phen)Cl2] on Polyoxometalates: New Catalysts for the Selective Oxidation of Tetralin,” Chinese Journal of Catalysis, vol. 32, pp. 807-811, 5// 2011.