[1]Lin CC, Lin WH, Hsiao CY, Lin KM, Li YY. Synthesis of one-dimensional ZnO nanostructures and their field emission properties. J Phys D-Appl Phys. 2008;41(4):045301.
[2]Khan A, Abbasi MA, Hussain M, Ibupoto ZH, Wissting J, Nur O, et al. Piezoelectric nanogenerator based on zinc oxide nanorods grown on textile cotton fabric. Appl Phys Lett. 2012;101(19):193506.
[3]Nunez CG, Pau JL, Ruiz E, Marin AG, Garcia BJ, Piqueras J, et al. Enhanced fabrication process of zinc oxide nanowires for optoelectronics. Thin Solid Films. 2014;555:42-7.
[4]Choopun S, Tubtimtae A, Santhaveesuk T, Nilphai S, Wongrat E, Hongsith N. Zinc oxide nanostructures for applications as ethanol sensors and dye-sensitized solar cells. Appl Surf Sci. 2009;256(4):998-1002.
[5]Mo XM, Fang GJ, Long H, Li SZ, Huang HH, Wang HN, et al. Near-ultraviolet light-emitting diodes realized from n-ZnO nanorod/p-GaN direct-bonding heterostructures. J Lumines. 2013;137:116-20.
[6]Liu G, Wang LY, Chen GM, Hua SC, Ge CQ, Zhang H, et al. Enhanced electromagnetic absorption properties of carbon nanotubes and zinc oxide whisker microwave absorber. J Alloy Compd. 2012;514:183-8.
[7]Hassan NK, Hashim MR. Flake-like ZnO nanostructures density for improved absorption using electrochemical deposition in UV detection. J Alloy Compd. 2013;577:491-7.
[8]Lin CC, Lin WH, Li YY. Synthesis of ZnO Nanowires and Their Applications as an Ultraviolet Photodetector. J Nanosci Nanotechnol. 2009;9(5):2813-9.
[9]Li XW, Sun P, Yang TL, Zhao J, Wang ZY, Wang WN, et al. Template-free microwave-assisted synthesis of ZnO hollow microspheres and their application in gas sensing. Crystengcomm. 2013;15(15):2949-55.
[10]Li CF, Hsu CY, Li YY. NH3 sensing properties of ZnO thin films prepared via sol - gel method. J Alloy Compd. 2014;606:27-31.
[11]Mosquera E, Bernal J, Zarate RA, Mendoza F, Katiyar RS, Morell G. Growth and electron field-emission of single-crystalline ZnO nanowires. Mater Lett. 2013;93:326-9.
[12]Lin CC, Lin WH, Li YY. Field emission properties of ZnO nanowires synthesized by thermal decomposition process. J Phys D-Appl Phys. 2008;41(22):225411.
[13]Sun K, Jing Y, Li C, Zhang XF, Aguinaldo R, Kargar A, et al. 3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H-2 generation. Nanoscale. 2012;4(5):1515-21.
[14]Drexler KE. Engines of Creation: The Coming Era of Nanotechnology. Doubleday. 1986.
[15]羅吉宗, 戴明鳳, 林鴻明, 鄭振宗, 蘇程裕. 奈米科技導論. 2008.
[16]Vakurov A, Mokry G, Drummond-Brydson R, Wallace R, Svendsen C, Nelson A. ZnO nanoparticle interactions with phospholipid monolayers. J Colloid Interface Sci. 2013;404:161-8.
[17]Khanlary MR, Vahedi V, Reyhani A. Synthesis and Characterization of ZnO Nanowires by Thermal Oxidation of Zn Thin Films at Various Temperatures. Molecules. 2012;17(5):5021-9.
[18]Ong WL, Natarajan S, Kloostra B, Ho GW. Metal nanoparticle-loaded hierarchically assembled ZnO nanoflakes for enhanced photocatalytic performance. Nanoscale. 2013;5(12):5568-75.
[19]Lee GH. Synthesis and cathodoluminescence of ZnO tetrapods prepared by a simple oxidation of Zn powder in air atmosphere. Ceram Int. 2011;37(1):189-93.
[20]Zhou M, Lv W, Liu CL, Liu DM, Wang YP. Flower-like and hollow sphere-like ZnO assisted by microorganisms and their UV absorption and photo catalytic performance. J Mater Sci-Mater Electron. 2013;24(1):36-43.
[21]Pawar RC, Kim HS, Lee CS. Improved field emission and photocatalysis properties of cacti-like zinc oxide nanostructures. Scr Mater. 2013;68(2):142-5.
[22]楊素華, 藍慶忠. 奈米碳管場發射顯示器. 科學發展期刊. 2004;382:68-71.
[23]黃宣宜. 場發射顯示器技術現況與發展. 光連雙月刊. 2002;39:57-64.[24]蔡宗岩. 以奈米碳管、碳纖維製備場發射陰極材料並探討電極幾何形狀對場發射特性之影響. 國立清華大學材料科學工程學系. 2002.
[25]孫紫茹. 以化學複合鍍法製備奈米碳材/Ni-P 場發射陰極研究. 國防大學理工學院化學及材料工程系. 2012.
[26]大同股份有限公司. http://wwwtatungcomtw/b5/.
[27]Wikipedia. http://zhwikipediaorg/wiki/ZnO.
[28]鄭天佑. 氧化物半導體之光學特性研究. 國立中山大學光電工程研究所. 2006.
[29]陳怡如. 大氣熱裂解法成長氧化鋅奈米結構在紫外光感測與光觸媒特性之研究. 逢甲大學材料科學與工程學系. 2010.
[30]Pearton SJ, Norton DP, Ip K, Heo YW, Steiner T. Recent progress in processing and properties of ZnO. Prog Mater Sci. 2005;50(3):293-340.
[31]Brusse J, Sampson M. Zinc whiskers: Hidden cause of equipment failure. IEEE IT Professional Magazine. 2004;6:43-7.
[32]Sears GW. A mechanism of whisker growth. Acta Metallurgica. 1955;3(4):367-9.
[33]Coleman RV, Sears GW. Elasticity of zinc whiskers. Acta Metallurgica. 1956;4(2):214-5.
[34]Brenner SS, Sears GW. Mechanism of whisker growth. 3. Nature of growth sites. Acta Metallurgica. 1956;4(3):268-70.
[35]Coleman RV, Sears GW. Growth of zinc whiskers. Acta Metallurgica. 1957;5(3):131-6.
[36]Wagner RS, Ellis WC. Vapor-liquid-solid mechanism of crystal growth and its application to silicon. Transactions of the Metallurgical Society of Aime. 1965;233(6):1053-&.
[37]Yang PD, Yan HQ, Mao S, Russo R, Johnson J, Saykally R, et al. Controlled growth of ZnO nanowires and their optical properties. Adv Funct Mater. 2002;12(5):323-31.
[38]Li Y, Meng GW, Zhang LD, Phillipp F. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Appl Phys Lett. 2000;76(15):2011-3.
[39]Gomez JL, Tigli O. Zinc oxide nanostructures: from growth to application. J Mater Sci. 2013;48(2):612-24.
[40]Kar S, Pal BN, Chaudhuri S, Chakravorty D. One-dimensional ZnO nanostructure arrays: Synthesis and characterization. J Phys Chem B. 2006;110(10):4605-11.
[41]Wan H, Ruda HE. A study of the growth mechanism of CVD-grown ZnO nanowires. J Mater Sci-Mater Electron. 2010;21(10):1014-9.
[42]Chen RQ, Zou CW, Yan XD, Alyamani A, Gao W. Growth mechanism of ZnO nanostructures in wet-oxidation process. Thin Solid Films. 2011;519(6):1837-44.
[43]Zhang GH, Wei L, Chen YX, Mei LM, Jiao J. Field emission property of ZnO nanoneedle arrays with different morphology. Mater Lett. 2013;96:131-4.
[44]Lin CC, Li YY. Synthesis of ZnO nanowires by thermal decomposition of zinc acetate dihydrate. Mater Chem Phys. 2009;113(1):334-7.
[45]Podrezova LV, Porro S, Cauda V, Fontana M, Cicero G. Comparison between ZnO nanowires grown by chemical vapor deposition and hydrothermal synthesis. Appl Phys A-Mater Sci Process. 2013;113(3):623-32.
[46]Ibrahim NB, Al-Shomar SM, Ahmad SH. Effect of aging time on the optical, structural and photoluminescence properties of nanocrystalline ZnO films prepared by a sol-gel method. Appl Surf Sci. 2013;283:599-602.
[47]Zhao CX, Li YF, Zhou J, Li LY, Deng SZ, Xu NS, et al. Large-Scale Synthesis of Bicrystalline ZnO Nanowire Arrays by Thermal Oxidation of Zinc Film: Growth Mechanism and High-Performance Field Emission. Cryst Growth Des. 2013;13(7):2897-905.
[48]Wen XG, Fang YP, Pang Q, Yang CL, Wang JN, Ge WK, et al. ZnO nanobelt arrays grown directly from and on zinc substrates: Synthesis, characterization, and applications. J Phys Chem B. 2005;109(32):15303-8.
[49]Sekar A, Kim SH, Umar A, Hahn YB. Catalyst-free synthesis of ZnO nanowires on Si by oxidation of Zn powders. J Cryst Growth. 2005;277(1-4):471-8.
[50]Kirkham M, Wang ZL, Snyder RL. In situ growth kinetics of ZnO nanobelts. Nanotechnology. 2008;19(44):445708.
[51]Yu W, Pan CX. Low temperature thermal oxidation synthesis of ZnO nanoneedles and the growth mechanism. Mater Chem Phys. 2009;115(1):74-9.
[52]Ren S, Bai YF, Chen J, Deng SZ, Xu NS, Wu QB, et al. Catalyst-free synthesis of ZnO nanowire arrays on zinc substrate by low temperature thermal oxidation. Mater Lett. 2007;61(3):666-70.
[53]Kim TW, Kawazoe T, Yamazaki S, Ohtsu M, Sekiguchi T. Low-temperature orientation-selective growth and ultraviolet emission of single-crystal ZnO nanowires. Appl Phys Lett. 2004;84(17):3358-60.
[54]Barreca D, Bekermann D, Comini E, Devi A, Fischer RA, Gasparotto A, et al. Urchin-like ZnO nanorod arrays for gas sensing applications. Crystengcomm. 2010;12(11):3419-21.
[55]Cheng CW, Zhang HF, Ren WN, Dong WJ, Sun Y. Three dimensional urchin-like ordered hollow TiO2/ZnO nanorods structure as efficient photoelectrochemical anode. Nano Energy. 2013;2(5):779-86.
[56]Zhu YQ, Chen YQ, Zhang XH, Chen Q, Shao Y. Urchin-like ZnO nanostructures: Synthesis, characterization and optical properties. Mater Lett. 2009;63(15):1242-4.
[57]Jiang H, Hu JQ, Gu F, Li CZ. Stable field emission performance from urchin-like ZnO nanostructures. Nanotechnology. 2009;20(5):055706.
[58]Umar A, Kim SH, Hahn YB. Sea-urchin-like ZnO nanostructures on Si by oxidation of Zn metal powders: Structural and optical properties. Superlattices Microstruct. 2006;39(1-4):145-52.
[59]Shen GZ, Bando Y, Lee CJ. Synthesis and evolution of novel hollow ZnO urchins by a simple thermal evaporation process. J Phys Chem B. 2005;109(21):10578-83.
[60]Gu ZJ, Paranthaman MP, Xu J, Pan ZW. Aligned ZnO Nanorod Arrays Grown Directly on Zinc Foils and Zinc Spheres by a Low-Temperature Oxidization Method. ACS Nano. 2009;3(2):273-8.
[61]Jia XH, Fan HQ. Room temperature solid-state synthesis and ethanol sensing properties of sea-urchin-like ZnO nanostructures. Mater Lett. 2010;64(14):1574-6.
[62]Fowler RH, Nordheim L. Electron emission in intense electric fields. Proc R soc Lond Ser A-Contain Pap Math Phys Character. 1928;119(781):173-81.
[63]Spindt CA, Brodie I, Humphrey L, Westerberg ER. Physical-properties of thin-film field-emission cathodes with molybdenum cones. J Appl Phys. 1976;47(12):5248-63.
[64]Paul R, Bhar R, Pal AK. Field emission properties of composite nano-Au/DLC films prepared by CVD technique. Mater Res Bull. 2010;45(5):576-83.
[65]Mo CB, Hwang JW, Cha SI, Hong SH. Multi-walled carbon nanotube/Co composite field emitters fabricated by in situ spray coating. Carbon. 2009;47(5):1276-81.
[66]Lisunova M, Lisunova Y, Lee S, Kim J, Joo K, Kim Y, et al. Field emission properties of screen-printed activated carbons. Carbon. 2009;47(4):1119-25.
[67]Fang YG, Wong KM, Lei Y. Synthesis and field emission properties of different ZnO nanostructure arrays. Nanoscale Res Lett. 2012;7.
[68]Nilsson L, Groening O, Emmenegger C, Kuettel O, Schaller E, Schlapbach L, et al. Scanning field emission from patterned carbon nanotube films. Appl Phys Lett. 2000;76(15):2071-3.
[69]Qian X, Liu H, Guo Y, Song Y, Li Y. Effect of aspect ratio on field emission properties of ZnO nanorod arrays. Nanoscale Res Lett. 2008;3(8):303-7.
[70]蔡增光, 潘扶民. 降低平面顯示器之工作電壓的新製程. 奈米通訊. 1999;6(2):11-6.
[71]Shi MM, Pan XW, Qiu WM, Zheng DX, Xu MS, Chen HZ. Si/ZnO core-shell nanowire arrays for photoelectrochemical water splitting. Int J Hydrog Energy. 2011;36(23):15153-9.
[72]Jiang ZX, Xue SL, Wu SX, Zou RJ, Zhang ZY, Jang M. Synthesis of unique SnO2/ZnO core-shell nanorods and nanoflowers and their field emission properties. Mater Lett. 2013;105:239-41.
[73]Fang YL, Li ZY, Xu S, Han DD, Lu DY. Optical properties and photocatalytic activities of spherical ZnO and flower-like ZnO structures synthesized by facile hydrothermal method. J Alloy Compd. 2013;575:359-63.
[74]Yi F, Huang YH, Zhang Z, Zhang Q, Zhang Y. Photoluminescence and highly selective photoresponse of ZnO nanorod arrays. Opt Mater. 2013;35(8):1532-7.
[75]Zhang Y, Deng SZ, Xu NS, Chen J. Fully sealed carbon nanotube flat-panel light source and its application as thin film transistor-liquid-crystal display backlight. J Vac Sci Technol B. 2008;26(3):1033-7.
[76]Kim YC, Yoo EH. Printed carbon nanotube field emitters for backlight applications. Jpn J Appl Phys Part 2 - Lett Express Lett. 2005;44(12-15):L454-L6.
[77]Hsu LC, Yu HC, Chang TH, Li YY. Formation of Three-Dimensional Urchin-like alpha-Fe2O3 Structure and Its Field-Emission Application. ACS Appl Mater Interfaces. 2011;3(8):3084-90.