(18.204.2.190) 您好!臺灣時間:2021/04/19 07:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉語慈
研究生(外文):Liu, Yu-Tzu
論文名稱:一維硒-二氧化矽奈米串珠核殼結構之合成 :實心及空心二氧化矽奈米球結構
論文名稱(外文):The Synthesis of One-dimensional Se-silica Bead-like Nanostructures with Solid or Hollow Silica Nanospheres
指導教授:王崇人
指導教授(外文):Wang, Churng-Ren Chris
口試委員:楊子萱陳建忠
口試委員(外文):Yang, Tzyy-SchiuanChen, Chien-Chung
口試日期:2014-07-09
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學暨生物化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:83
中文關鍵詞:一維硒奈米粒子溶膠-凝膠法奈米串珠核殼結構
外文關鍵詞:one-dimensional selenium nanoparticlessol-gel processbead-like nanostructure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:262
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
我們過去開發之一維硒奈米粒子合成方法,已說明可得到特殊區段式晶相之結構,而此一維奈米硒經由表面修飾後可得到特殊魚標狀核殼結構,然而在硒奈米線的例子可得串珠之結構,但是該製程上一直有聚集現象尚未克服。為此,本研究分為兩部分去探討,第一部分為合成分散的一維硒-二氧化矽奈米串珠核殼結構(1D-Se@segmented-SiO2 spheres;1D-Se@s-SS),並探討此結構與長度的關係。第二部分為操控合成具有實心或空心二氧化矽之1D-Se@s-SS奈米串珠核殼結構,並展示該奈米結構物在選擇性反應的初步結果。
首先,我們選用結構特殊且分散的一維硒奈米粒子做為起始物,長度範圍操控介於500 nm至4000 nm之間,接著利用傳統溶膠-凝膠法製備而得1D-Se@s-SS奈米串珠核殼結構,由TEM分析得知隨著不同長度分布之一維硒奈米粒子起始物,除了表面鍍上一層厚度均勻的二氧化矽殼層外,還會得到不同顆粒數的二氧化矽球,在此也提供一維硒奈米粒子晶相具連續區段式(tSe-mSe-tSe)n的另一證據。經由統計得知二氧化矽球之間的平均間距為647 ± 276 nm,二氧化矽球平均直徑為197 ± 24 nm。於第二部分,經由操控溶膠-凝膠法所用起始物之水解縮合程度,我們可成功合成具有實心或空心二氧化矽球之1D-Se@s-SS奈米核殼結構。溶膠-凝膠法所用起始物水解縮合程度的操控,可經由加入微量水與適量鹼為之。我們同時展示對兩種奈米串珠硒核殼結構進行厚度的操控,透過改變溶膠-凝膠法所用起始物之添加量,觀察其二氧化矽球之厚度。於實心的情況,厚度109 - 182 nm;於空心的情況,殼層厚薄可操控介於13至45 nm之間,而其內徑維持一致約93 nm,證實先前所主張之一維硒奈米粒子本身具有連續區段式之晶型變化,進而造成所使用的穩定劑於單一晶型的表面發生凝結的現象,因而導致連續區段式二氧化矽球之生成。最後,我們展示對於奈米串珠核殼結構之選擇性反應部分所達成的初步認識,透過選用不同厚度之奈米串珠核殼結構作為前驅物,以聯胺作為侵蝕反應試劑,發現當t-Se厚度小於5 nm時,主要以移除m-Se為主;當t-Se厚度達15 nm時,則該侵蝕反應主要以移除t-Se為主。

The synthesis of one-dimensional selenium nanoparticles with unique segmented monoclinic (m) and trigonal (t) cystal phases has been demonstrated previouly. Such segmented crystal phase nanostructure was evidenced while the selenium surface was coated by silica via sol-gel process. The products own a unique nanofloat structure with typically one solid or hollow silica nanosphere located at the middle of individual selenium nanorod. To extend the above findings, we report herein two series of studies : First, the synthesis of dispersed one-dimensional Se-silica bead-like nanostructures (1D-Se@segmented-SiO2 spheres; 1D-Se@s-SS) in more detail, particularly for the cases containing Se nanowires. Meanwhile, we demonstrated the evolution of such bead-like nanostructure from Se nanorods to nanowires in terms of both the number of beads and their mean spacing. Secondly, a series of studies were conducted in order to describing the detailed formation mechanism for the bead-like 1D-Se@s-SS nanostructures with solid or hollow silica nanospheres. In addition, we demonstrated the results of our preliminary studies regarding their selective reactivity towards the selenium removal reactions.
In the first part, one-dimensional selenium nanoparticles with the average lengths ranging from 500 nm to 4000 nm were used as the starting material and the bead-like 1D-Se@s-SS nanostructures with good dispersivities were synthesized using sol-gel method. The results indicated that the number of beads increases accordingly to the increase of the length for the 1D nano-Se. Also, the averaged diameters of the silica nanospheres are of 197 ± 24 nm and the averaged spacings between two adjacent silica nanospheres are of 647 ± 276 nm. They provided a more clear picture regarding the segmented cystal-phase of the 1D nsnoSe, (tSe-mSe-tSe)n. In the second part, we demonstrated the formation of the bead-like 1D-Se@s-SS nanostructures with solid or hollow silica nanospheres can be achieved by the use of the starting material (mercaptopropyl trimethoxysilan, MPTMS) for the sol-gel process with a carefully controlled extent of its hydrolysis/condensation prior to the silica coating. It was sensitive to the humidity and pH value, the aging of the starting chemicals, and the trace amount of water/NaOH added. The bead-like 1D-Se@s-SS nanostructures with hollow silica nanospheres can be synthesized by using relatively fresh MPTMS, or less extent of the hydrolysis/condensation, and a subsequent wash by ethanol. Meanwhile, the thickness of the silica shells can be controlled from the sol-gel process to obtain in a range from 13 to 45 nm and the inner diameters are roughly constant in size of ca. 93 nm. This constant averaged inner diameter was attributed to the existence of the condensation of the nanoparticle stabilizing agent (carboxymethylcellulose, CMC) at the m-Se sites. Finally, we demonstrated the results of our preliminary studies of the selective reactivity in the chosen system of the bead-like 1D-Se@s-SS nanostructures with solid silica nanospheres. The reactants were prepared containing different thickness at the surface of t-Se. The Se etching reaction, resulting in the Se removal, was chosen in this demonstration. Our results indicated that the removal of Se occurred at the m-Se while the thickness was less than 5 nm, and at the sites of t-Se while the thickness was greater than 15 nm.

中文摘要.............................................................................................................I
ABSTRACT..........................................................................................................III
目錄................................................................................................................V
圖目錄.............................................................................................................VII
表目錄..............................................................................................................XV
第一章 緒論..........................................................................................................1
1.1淺談「硒」元素.....................................................................................................1
1.2一維奈米材料的製備方法...............................................................................................3
1.3一維硒奈米材料製備與晶相轉變..........................................................................................4
1.4核殼複合奈米材料之合成...............................................................................................8
1.4.1 中空二氧化矽奈米粒子之合成方法....................................................................................14
1.4.2以硒為模板之移除反應.............................................................................................20
1.5研究動機.........................................................................................................22
1.6研究目標及章節規劃.................................................................................................26
第二章 合成一維硒-二氧化矽奈米串珠核殼結構................................................................................27
2.1合成策略.........................................................................................................27
2.2實驗藥品與儀器檢測.................................................................................................29
2.3合成步驟和檢測樣品製備..............................................................................................30
2.3.1 起始物一維硒奈米粒子之製備........................................................................................30
2.3.2一維硒-二氧化硒奈米串珠核殼結構之製備................................................................................32
2.4結果與討論........................................................................................................33
2.4.1 一維硒奈米粒子作為起始物之長度操控.................................................................................33
2.4.2 分散的1D-Se@s-SS核殼結構物與長度的關係............................................................................37
第三章 奈米串珠複合材料之合成 ...........................................................................................43
3.1合成策略.........................................................................................................43
3.2實驗藥品與儀器檢測.................................................................................................46
3.3合成步驟和檢測樣品製備..............................................................................................47
3.3.1奈米串珠核殼結構之操控............................................................................................47
3.3.2奈米串珠核殼結構之初步反應性測試....................................................................................49
3.4 結果與討論.......................................................................................................50
3.4.1 solid/hollow-SiO2 1D-Se@s-SS核殼結構物合成.....................................................................50
3.4.2 solid/hollow-SiO2 1D-Se@s-SS核層厚度操控.......................................................................55
3.4.3奈米串珠核殼結構之反應性..........................................................................................59
第四章 結論與未來展望.................................................................................................62
參考文獻............................................................................................................64

1.Lijima, S. Nature, 1991, 354, 56-58.
2.Kind, H.; Yan, H.; Messer, B.; Law, M.; Yang, P. Adv. Mater. 2002, 14, 158-160.
3.Lieber, C. M.; Wang, Z. L. MRS Bull. 2007, 32, 99-108.
4.Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M., Science 2001, 293 (5533), 1289-1292.
5.Lide, David R.CRC Handbook of chemistry and physics 74 th edition; CRC Press, 1993, Section 4, p.26.
6.Liu, W.; Li, X.; Wong, Y.-S.; Zheng, W.; Zhang, Y.; Cao, W.; Chen, T. ACS Nano 2012, 6, 6578-6591.
7.Gates, B.; Mayers, B.; Wu, Y.; Sun, Y.; Cattle, B.; Yang, P.; Xia, Y., Advanced Functional Materials 2002, 12 (10), 679-686.
8.Chen, L.; Zhang, W.; Feng, C.; Yang, Z.; Yang, Y., Industrial & Engineering Chemistry Research 2012, 51 (11), 4208-4214.
9.Shpaisman, N.; Givan, U.; Patolsky, F., ACS Nano 2010, 4 (4), 1901-1906.
10.Gu, S.-I.; Shin, H.-S.; Yeo, D.-H.; Hong, Y.-W.; Nahm, S., Current Applied Physics 2011, 11 (1, Supplement), S99-S102.
11.Li, H. T.; Regensburger, P. J. J. Appl. Phys. 1963, 34, 1730-1735.
12.Berger, L. I. In Semiconductor Materials; CRC Press: 1997, 86-88.
13.Qian, J.; Jiang, K.-J.; Huang, J.-H.; Liu, Q.-S.; Yang, L.-M.; Song, Y. Angew. Chem. Int. Ed. 2012, 51, 10351-10354.
14.Wu, Y.; Yan, H.; Huang, M.; Messer, B.; Song, J. H.; Yang, P. Chem. Eur. J. 2002, 8, 1260-1268.
15.Duan, X.; Leiber, C.M.J. Am.Chem.Soc.2000, 122, 188-189.
16.Li, Y.; Meng, G.W.; Zhang, L.D.; Phillipp, F.Applied physics Letters 2000, 76, 2011-2013.
17.Chang, P,; Fan, Z,; Wang, D.; Tseng, W.; Chiou, W. Chem.Mater .2004, 16, 5133-5137.
18.Sertchook, H.; Avnir, D.; Chem.Mater .2003, 15, 1690-1694.
19.Chang, S.S.; Shih, C.W.; Chen, C.D.; Lai, W.C.; Wang, C.R.C., Langmuir ,1999, 15, 701-709.
20.Chen, C.C; Chao, C.Y.; Lang, Z. H. Chem.Mater.2000, 12, 1516-1518.
21.Gates, B.; Mayers, B.; Grossman, A.; Xia, Y. Advanced Materials 2002, 14, 1749-1752.
22.Gates, B.; Yin, Y.; Xia, Y., Journal of the American Chemical Society 2000, 122 (50), 12582-12583.
23.Li, Q.; Yam, V. W.-W., Chemical Communications 2006, (9), 1006-1008.
24.劉明翰, 國立中正大學碩士論文 2008.
25.C. L. Carnes, K. J. Klabunde, Chem. Mater. 2002, 14, 1806.
26.H. Kim, M. Achermann, L. P. Balet, J. A. Hollingsworth, V. I.Klimov, J. Am. Chem. Soc. 2005, 127,544.
27.P. M. Arnal, M. Comotti and F. Schuth, Angew. Chem., Int. Ed.,2006, 45, 8224.
28.Chen, J.-F.; Ding, H.-M.; Wang, J.-X.; Shao, L. Biomaterials 2004, 25, 723-727.
29.Hu, Y.; Tao, K.; Wu, C.; Zhou, C.; Yin, H.; Zhou, S., The Journal of Physical Chemistry C. 2013, 117 (17), 8974-8982.
30.Jeong, U., T. Herricks, et al. J. Am. Chem. Soc., 2005, 127, 1098–1099.
31.沈慧觀, 國立中正大學碩士論文 2007.
32.Yu, D.; Wu, J.; Gu, Q.; Park, H., Journal of the American Chemical Society 2006, 128 (25), 8148-8149.
33.Ching, S.; Kriz, D. A.; Luthy, K. M.; Njagi, E. C.; Suib, S. L. Chem. Commun.2011, 47, 8286−8288.
34.Xu, X. J.; Fang, X. S.; Zhai, T. Y.; Zeng, H. B.; Liu, B. D.; Hu, X.Y.; Bando, Y.; Golberg, D. Small 2011, 7, 445−449.
35.Zhang, H. G.; Zhu, Q. S.; Zhang, Y.; Wang, Y.; Zhao, L.; Yu, B. Adv. Funct. Mater. 2007, 17, 2766−2771.
36.Wang, X.; Wu, X. L.; Guo, Y. G.; Zhong, Y. T.; Cao, X. Q.; Ma,Y.; Yao, J. N. Adv. Funct.Mater. 2010, 20, 1680−1686.
37.Chen, M.; Wu, L.; Zhou, S.; You, B. Advanced Materials 2006, 18, 801-806.
38.Li, W.; Sha, X.; Dong, W.; Wang, Z. Chemical Communications 2002, 2434-2435.
39.Yeh, Y.-Q.; Chen, B.-C.; Lin, H.-P.; Tang, C.-Y. Langmuir 2005, 22, 6-9.
40.Lin, Y.-S.; Wu, S.-H.; Tseng, C.-T.; Hung, Y.; Chang, C.; Mou, C.-Y. Chemical Communications 2009, 3542-3544.
41.Park, J. C.; Bang, J. U.; Lee, J.; Ko, C. H.; Song, H., Journal of Materials Chemistry 2010, 20 (7), 1239-1246.
42.Wang, Y.; Su, X.; Ding, P.; Lu, S.; Yu, H. Langmuir 2013, 29, 11575-11581.
43.Jiang, X.; Mayers, B.; Wang, Y.; Cattle, B.; Xia, Y.,Chemical Physics Letters 2004, 385 (5–6), 472-476.
44.R.A. Zingaro, W.C. Cooper (Eds.), Selenium, Van Nostrand Reinhold, New York, 1974.
45.Murphy, K. E.; Altman, M. B.; Wunderlich, B. J. Appl. Phys. 1977, 48, 4122-4131.
46.Brinker, C. J., “Sol-Gel Science: The Physics and Chemistry of Sol-Gel processing” Harcourt Brace & Company, New York, 1990.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 水熱合成二氧化矽與二氧化鋯/二氧化矽奈米複合結構於油中磷脂移除之應用
2. 啞鈴形奈米金及金奈米棒-金奈米殼複合結構: 合成及其雷射誘發熔化
3. 應用THUB標籤在蛋白質的表達與純化上
4. 二氧化矽氣凝膠與二氧化矽複合氣凝膠之探討與二氧化矽氣凝膠薄膜之應用
5. Stern層和溫度對二氧化矽奈米粒子電動行為的影響
6. 溶膠凝膠法製備碳、二氧化矽和有機修飾二氧化矽反蛋白石結構暨材料特性分析
7. 利用旋轉塗佈法製作不同酸鹼值之二氧化矽奈米球高穿透膜與其光學特性研究
8. 混合粒子群與人工魚群演算法於奈米研磨製程參數最佳化之研究
9. 第一部分:芫荽水萃物對馬兜鈴酸腎毒性之減毒功效評估 第二部分:應用奈米金桿誘導斑馬魚螢光表現之評估
10. 鹼激發爐灰砂漿鋼筋握裹性質研究
11. 由元素矽水解法合成無機二氧化矽奈米顆粒及以RAFT活自由基聚合法合成用於不飽和聚酯、乙烯基酯及環氧樹脂具核殼型結構之高分子接枝二氧化矽奈米顆粒及高分子接枝蒙特那石黏土之抗收縮劑及增韌劑
12. 研發奈米硫酸鈣/氫氧基磷灰石雙相生醫材料攜帶TGF-β1/VEGF於活髓治療之應用-材料性質、生物相容性及動物實驗
13. 設計並合成含有醯胺官能基的乙炔蒽和乙炔芘衍生物之有機凝膠分子
14. 整合有機無機與仿生複合概念於奈米複晶及奈米多層膜內進行微結構、組成物及製程控制以達機械性質之強化
15. 吡啶非共價鍵作用對超分子自組裝液晶探討
 
系統版面圖檔 系統版面圖檔