跳到主要內容

臺灣博碩士論文加值系統

(3.237.6.124) 您好!臺灣時間:2021/07/24 04:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張芹瑗
研究生(外文):Chin-Yuan Chang
論文名稱:成人數量表徵系統的檢驗
指導教授:蔣文祁蔣文祁引用關係
口試委員:蔣文祁鄭中平李玉琇
口試日期:2013-07-12
學位類別:碩士
校院名稱:國立中正大學
系所名稱:心理學研究所
學門:社會及行為科學學門
學類:心理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:中文
論文頁數:55
中文關鍵詞:數量表徵核心知識系統概數估計系統數目頓識運算衝量效果
外文關鍵詞:numerical representationcore systemapproximate number systemsubitizingoperational momentum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:1
本研究的目的是檢驗成人數量表徵系統的特性。關於人類數量表徵系統,影響力最大的理論之一是雙重核心系統論。該理論主張人類先天具有兩個表徵數量的核心系統,即表徵較大數量的概數估計系統(以下簡稱ANS)及精確表徵小數目的小數系統。相對地,單一核心系統論則主張ANS表徵所有的數目或數量,不限範圍,而對小數目的估計因另外受處理及儲存視覺刺激的特定歷程所影響,才與大數目的估計表現有所不同。晚近有研究者提出一個具整合性的大小數系統互動論,主張大數目的估計涉及ANS的運作,而小數目的估計則屬於平行個體化的歷程,受工作記憶或注意力容量的限制,但在工作記憶或注意力容量被佔據的情況下,小數目刺激也是由ANS進行估計處理。實驗一以圓點數目估計作業檢驗大數目與小數目估計是否反映兩個不同系統的運作,並以雙重作業檢驗小數目估計是否會受視覺工作記憶負荷量影響。此實驗結果顯示大數目和小數目的估計分別由兩個不同系統處理,而且小數目估計不受視覺工作記憶負荷量影響,支持雙重核心系統論。
關於人類數量表徵的另一個具有獨特重要性的議題是,人類在習得數字符號之後,是否將數字符號系統對應到先天ANS的非符號數量表徵而產生單一、跨符號的抽象數量表徵,或是會依據符號的不同的性質形成符號特定的多重數量表徵。過去研究發現運算衝量(以下簡稱OM)效果與反映出ANS特性的心理數線有關:受試者在作加法(減法)運算時似乎是沿心理數線朝不同方向移動,以致於高估(低估)結果值。實驗二以二位數數字的減法比較作業檢驗OM效果,並運用OM效果與心理數線的關連性檢驗數字符號的數量表徵及其與ANS的關係。此實驗結果顯示,OM效果只在解無借位題目時出現,即受試者在解無借位題目時傾向用ANS進行估計。然而在解借位題目時受試者傾向使用計算,因此並無OM效果出現,支持了數字符號與多重數量表徵對應的看法。此實驗並發現受試者的ANS精確性高低也與其作業表現優劣有關,ANS高精確組對於數字的處理優於低精確組,較傾向使用有效的策略解決算術問題。
摘要 i
目錄 iii
表次 iv
圖次 iv
附錄目次 v
緒論 1
雙重核心系統論:系統一、概數估計系統 1
雙重核心系統論:系統二、小數系統 3
關於數量表徵系統的其他理論 4
單一核心系統論 4
大小數系統互動論 6
從非符號到符號表徵:語言及教育的影響 7
研究目的 9
實驗一 13
前導實驗 13
方法 13
結果 17
討論 27
實驗二 29
方法 29
結果 32
討論 38
綜合討論 43
參考文獻 47
附錄 55

Agrillo, C., & Piffer, L. (2012). Musicians outperform nonmusicians in magnitude estimation: evidence of a common processing mechanism for time, space and numbers. Quarterly Journal of Experimental Psychology, 65(12), 2321-2332. doi:10.1080/17470218.2012.680895

Agrillo, C., Piffer, L., & Bisazza, A. (2011). Number versus continuous quantity in numerosity judgments by fish. Cognition, 119(2), 281-287. doi:10.1016/j.cognition.2010.10.022

Agrillo, C., Piffer, L., Bisazza, A., & Butterworth, B. (2012). Evidence for two numerical systems that are similar in humans and guppies. PLoS One, 7(2). doi:10.1371/journal.pone.0031923

Barth, H., La Mont, K., Lipton, J., Dehaene, S., Kanwisher, N., & Spelke, E. (2006). Non-symbolic arithmetic in adults and young children. Cognition, 98(3), 199-222. doi:10.1016/j.cognition.2004.09.011

Brannon, E. M., Lutz, D., & Cordes, S. (2006). The development of area discrimination and its implications for number representation in infancy. Developmental Science, 9(6), F59-F64. doi:10.1111/j.1467-7687.2006.00530.x

Burr, D. C., Turi, M., & Anobile, G. (2010). Subitizing but not estimation of numerosity requires attentional resources. Journal of Vision, 10(6), 20. doi:10.1167/10.6.20

Cantlon, J. F. (2012). Math, monkeys, and the developing brain. Proceedings of the National Academy of Sciences of the United States of America, 109(Supplement 1), 10725-10732. doi:10.1073/pnas.1201893109

Cantlon, J. F., & Brannon, E. M. (2006). Shared system for ordering small and large numbers in monkeys and humans. Psychological Science, 17(5), 401-406. doi:10.1111/j.1467-9280.2006.01719.x

Cantlon, J. F., & Brannon, E. M. (2007). Basic math in monkeys and college students. PLoS Biology, 5(12): e328, 2912-2919. doi:10.1371/journal.pbio.0050328

Chesney, D. L., & Haladjian, H. H. (2010). Evidence for a shared mechanism used in multiple-object tracking and subitizing. Attention, Perception, & Psychophysics, 73(8), 2457-2480. doi:10.3758/s13414-011-0204-9

Cohen Kadosh, R., Cohen Kadosh, K., Kaas, A., Henik, A., & Goebel, R. (2007). Notation-dependent and -independent representations of numbers in the parietal lobes. Neuron, 53(2), 307-314. doi:10.1016/j.neuron.2006.12.025

Cohen Kadosh, R., & Walsh, V. (2009). Numerical representation in the parietal lobes: Abstract or not abstract? Behavioral and Brain Sciences, 32(3-4), 313-328. doi:10.1017/s0140525x09990938

Cordes, S., Gelman, R., Gallistel, C. R., & Whalen, J. (2001). Variability signatures distinguish verbal from nonverbal counting for both large and small numbers. Psychological Bulletin and Review, 8(4), 698-707. doi:10.3758/BF03196206

Cowan, N. (2000). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87-114. doi:10.1017/S0140525X01003922

de Hevia, M. D., & Spelke, E. S. (2009). Spontaneous mapping of number and space in adults and young children. Cognition, 110(2), 198-207. doi:10.1016/j.cognition.2008.11.003

Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1), 1-42. doi:10.1016/0010-0277(92)90049-N

Dehaene, S. (2011). The number sense: How the mind creates mathematics. New York, NY: Oxford University Press.

Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371-396. doi:10.1037/0096-3445.122.3.371

Dehaene, S., Izard, V., & Piazza, M. (2005). Control over non-numerical parameters in numerosity experiments. Retrieved from http://www.unicog.org/pm/pmwiki.php/Main/Arithmetics.

Dehaene, S., Izard, V., Spelke, E., & Pica, P. (2008). Log or linear? Distinct intuitions of the number scale in Western and Amazonian indigene cultures. Science, 320(5880), 1217-1220. doi:10.1126/science.1156540

Feigenson, L. (2011). Objects, sets, and ensembles. In S. Dehaene & E. M. Brannon (Eds.), Space, time and number in the brain: Searching for the foundations of mathematical thought. (pp. 13-22). London: Academic Press. doi:10.1016/B978-0-12-385948-8.00003-7

Feigenson, L., Carey, S., & Hauser, M. (2002). The representations underlying infants' choice of more: Object files versus analog magnitudes. Psychological Science, 13(2), 150-156. doi:10.1111/1467-9280.00427

Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307-314. doi:10.1016/j.tics.2004.05.002

Fischer, M. H., Willmes, K., Klein, E., Moeller, K., & Nuerk, H.-C. (2011). Extending the mental number line. Journal of Psychology, 219(1), 3-22. doi:10.1027/2151-2604/a000041

Gallistel, C. R., & Gelman, R. (2000). Non-verbal numerical cognition: from reals to integers. Trends in Cognitive Sciences, 4(2), 59-65. doi:10.1016/S1364-6613(99)01424-2

Gebuis, T., & Reynvoet, B. (2011). Generating nonsymbolic number stimuli. Behavior Research Methods, 43(4), 981-986. doi:10.3758/s13428-011-0097-5

Gilmore, C., Attridge, N., & Inglis, M. (2011). Measuring the approximate number system. The Quarterly Journal of Experimental Psychology, 64(11), 2099-2109. doi:10.1080/17470218.2011.574710

Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423(6939), 534-537. doi:10.1038/nature01647

Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the" number sense": The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44(5), 1457. doi:10.1037/a0012682

Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665-668. doi:10.1038/nature07246

Hauser, M. D., & Carey, S. (2003). Spontaneous representations of small numbers of objects by rhesus macaques: examinations of content and format. Cognitive Psychology, 47(4), 367-401. doi:10.1016/S0010-0285(03)00050-1

Hyde, D. C. (2011). Two systems of non-symbolic numerical cognition. Frontiers in human neuroscience, 5. doi:10.3389/fnhum.2011.00150

Kahneman, D., Treisman, A., & Gibbs, B. J. (1992). The reviewing of object files: Object-specific integration of information. Cognitive Psychology, 24(2), 175-219. doi:10.1016/0010-0285(92)90007-O

Knops, A., Viarouge, A., & Dehaene, S. (2009). Dynamic representations underlying symbolic and nonsymbolic calculation: Evidence from the operational momentum effect. Attention, Perception, & Psychophysics, 71(4), 803-821. doi:10.3758/app.71.4.803

Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental science, 14(6), 1292-1300. doi:10.1111/j.1467-7687.2011.01080.x

Mandler, G., & Shebo, B. J. (1982). Subitizing: An analysis of its component processes. Journal of Experimental Psychology: General, 111(1), 1-22. doi:10.1037/0096-3445.111.1.1

Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011). Impaired acuity of the approximate number system underlies mathematical learning disability (Dyscalculia). Child Development, 82(4), 1224-1237. doi:10.1111/j.1467-8624.2011.01608.x

McCrink, K., Dehaene, S., & Dehaene-Lambertz, G. (2007). Moving along the number line: Operational momentum in nonsymbolic arithmetic. Perception and Psychophysics, 69(8), 1324-1333. doi:10.3758/BF03192949

Moeller, K., Klein, E., Nuerk, H. C., & Cohen Kadosh, R. (2012). A unitary or multiple representations of numerical magnitude? - the case of structure in symbolic and non-symbolic quantities. Frontiers in Psychology, 3(191). doi:10.3389/fpsyg.2012.00191

Naccache, L., & Dehaene, S. (2001). The priming method: Imaging unconscious repetition priming reveals an abstract representation of number in the parietal lobes. Cerebral Cortex, 11(10), 966-974. doi:10.1093/cercor/11.10.966

Nikoloska, A. (2008). Infants’ numerical abilities and models of early enumeration. Review of Psychology, 15(1-2), 27-34. Retrieved from http://psihologija.ffzg.unizg.hr/review

Nuerk, H.-C., Kaufmann, L., Zoppoth, S., & Willmes, K. (2004). On the development of the mental number line: More, less, or never holistic with increasing age? Developmental Psychology, 40(6), 1199-1211. doi:10.1037/0012-1649.40.6.1199

Nuerk, H.-C., Wood, G., & Willmes, K. (2005). The universal SNARC effect. Experimental Psychology, 52(3), 187-194. doi:10.1027/1618-3169.52.3.187

Olivers, C. N. L., & Watson, D. G. (2008). Subitizing requires attention. Visual Cognition, 16(4), 439-462. doi:10.1080/13506280701825861

Piazza, M., Fumarola, A., Chinello, A., & Melcher, D. (2011). Subitizing reflects visuo-spatial object individuation capacity. Cognition, 121(1), 147-153. doi:10.1016/j.cognition.2011.05.007

Piazza, M., Pinel, P., Le Bihan, D., & Dehaene, S. (2007). A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron, 53(2), 293-305. doi:10.1016/j.neuron.2006.11.022

Pica, P. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306(5695), 499-503. doi:10.1126/science.1102085

Pinhas, M., & Fischer, M. H. (2008). Mental movements without magnitude? A study of spatial biases in symbolic arithmetic. Cognition, 109(3), 408-415. doi:10.1016/j.cognition.2008.09.003

Pylyshyn, Z. W., & Storm, R. W. (1988). Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision, 3(3), 179-197. doi:10.1163/156856888X00122

Revkin, S. K., Piazza, M., Izard, V., Cohen, L., & Dehaene, S. (2008). Does subitizing reflect numerical estimation? Psychological Science, 19(6), 607-614. doi:10.1111/j.1467-9280.2008.02130.x

Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime users guide. Pittsburgh, PA: Psychology Software Tools.

Shimomura, T., & Kumada, T. (2011). Spatial working memory load affects counting but not subitizing in enumeration. Attention, perception and psychophysics, 73(6), 1694-1709. doi:10.3758/s13414-011-0135-5

Tira, M. D., & Lindemann, O. (2011). Operational momentum in numerosity production judgments of multi-digit number problems. Journal of Psychology, 219(1), 50-57. doi:10.1027/2151-2604/a000046

Trick, L. M., & Pylyshyn, Z. W. (1994). Why are small and large numbers enumerated differently? A limited-capacity preattentive stage in vision. Psychological Review, 101(1), 80-102. doi:10.1037/0033-295X.101.1.80

Vetter, P., Butterworth, B., & Bahrami, B. (2008). Modulating attentional load affects numerosity estimation: Evidence against a pre-attentive subitizing mechanism. Plos One, 3(9):e3269. doi:10.1371/journal.pone.0003269

Xu, F. (2003). Numerosity discrimination in infants: Evidence for two systems of representations. Cognition, 89(1), B15-B25. doi:10.1016/S0010-0277(03)00050-7

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top