(3.235.25.169) 您好!臺灣時間:2021/04/20 18:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:余逸哲
研究生(外文):YI-CHE YU
論文名稱:以定量RF3 (R=Dy 及Tb) 塗佈層進行NdFeB 燒結永磁體擴散及磁性強化之研究
論文名稱(外文):Magnetic Properties Enhancement of Sintered NdFeB Magnets by Diffusing Controlled RF3 (R=Dy and Tb) Layer
指導教授:張文成張文成引用關係
指導教授(外文):Wen-Cheng Chang
口試委員:張晃暐邱軍浩
口試委員(外文):Huang-Wei ChangC. H. Chiu
口試日期:2014-06-20
學位類別:碩士
校院名稱:國立中正大學
系所名稱:物理學系暨研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:102
中文關鍵詞:NdFeB晶界擴散稀土氟化物
外文關鍵詞:NdFeBgrain boundary diffusion
相關次數:
  • 被引用被引用:1
  • 點閱點閱:178
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以定量塗佈粉體進行晶界擴散,來達到提升磁石本質矯頑磁力為主要目的。第二部分探討粉體狀態(結晶度、粒徑)對磁石本質矯頑磁力提升之研究。
實驗中指出粉體結晶度不佳會影響重稀土的擴散效率。透過熱處理提升粉體結晶度後,可使重稀土的擴散效率得到改善。而當熱處理溫度過高則會使粉體粒徑粗化,導致稀土較不易進入磁石及晶界中,降低重稀土的擴散效益。對3.2 mm厚之燒結NdFeB磁石而言,非晶粉體B最佳熱處理條件為X2、X3 oC,而經沾覆及擴散處理後磁石之∆iHc=5.9 kOe;又非晶粉體C最佳熱處理條件為X1 oC, 而∆iHc可高達8.7 kOe。
第二部分探討為定量塗佈之研究。由薄膜胚體結果可發現2 mm厚磁石最佳磁特性出現在薄膜A厚度X1時,磁石之ΔiHc=6.0 kOe。對3.2 mm磁石而言,當薄膜A厚度X3時,磁石之ΔiHc=5.9 kOe,;而5 mm磁石最佳磁特性出現在薄膜A厚度X1時,其ΔiHc=4.4 kOe。但是若使用薄膜C在 3.2 mm磁石上時,其ΔiHc可達8.8 kOe。顯示其具有作為晶界擴散量產化的技術與成本優勢。

In this study, we adopted the grain boundary diffusion (GBD) process to improve the iHc of sintered NdFeB magnet. Powder were used as the diffusion source in this process. In order to study the effect of R content on the increment of iHc of sintered NdFeB magnet, film was prepared by screen printing.
At first, the effect of crystallinity and particle size of powders on the magnetic properties of the GBD NdFeB magnets was also studied. It can be found that the powders with semicrystalline structure have to absorb thermal energy for crystallization prior to GBD process, which might degrade the GBD performance. As a result, low temperature, X oC, crystallization of powders before making screen printing film should be necessary. Nevertheless, too high temperature, i.e., Y oC, may cause particle coarsening to degrade the GBD efficiency. The optimum crystallization temperature for B powders is X2,X3 oC and results in the coercivity increment (∆iHc) of 5.9 kOe. In contrast, the best crystallization temperature for C powders is X1 oC and the ∆iHc reaches 8.7 kOe.
At last, the films were adopted to study the controlled R content GBD effect on the sintered NdFeB magnets. It is found that, for 2-mm thickness magnet,A film is sufficient for giving the GBD magnet 6.0 kOe in ΔiHc. For 3.2-mm thickness magnet, the optimal magnetic properties of ΔiHc=6.0 kOe with A film. For 5-mm thickness magnet, the optimal magnetic properties of ΔiHc=4.4 kOe. More attractive results were found in the case of using C film, for 3.2-mm thickness magnet, the optimal magnetic properties of ΔiHc=8.8 kOe by using C µm film. From the above results, it reflects that the C film for GBD process is cost effective in enhancing the coercivity of sintered NdFeB magnets, which might be a suitable solution for mass production of GBD NdFeB magnets.

摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 磁性材料的分類與簡介 3
1-3 稀土永久磁石之簡介 7
1-3-1 R-Co系永磁材料 7
1-3-2 R-Fe-B系永磁材料 9
1-4 R2Fe14B化合物之晶體結構(R=rare earth) 12
1-5 燒結釹鐵硼磁石之簡介[37] 14
1-5-1 合金的熔煉及鑄錠 15
1-5-2 合金製粉技術 15
1-5-3 磁粉配向與壓制成型 17
1-5-4 真空燒結與熱處理 18
1-5-5 磁石加工及表面處理 18
1-6 燒結釹鐵硼磁石發展現況 19
1-7 晶界擴散法簡介 22
1-8 文獻回顧 24
1-9 研究目的與動機 27
第二章 理論基礎 29
2-1 磁性來源 29
2-2 物質的磁性分類 31
2-3 磁滯曲線 35
2-4 磁異向性(Magnetic anisotropy) 38
2-5 稀土永磁之矯頑機制 40
2-5-1 反向磁區孕核成長型機制 41
2-5-2 磁區壁栓固型機制 41
2-5-3 單磁區和微晶型機制 42
2-6 磁粒子大小對磁性的影響 43
2-7 晶粒大小對本質矯頑磁力之影響 45
2-8 擴散理論[52] 47
第三章 實驗方法 49
3-1 實驗流程 49
3-2 燒結釹鐵硼磁石晶界改質製程 50
3-2-1 燒結釹鐵硼磁石選購 50
3-2-2 磁石表面處理 54
3-2-3 粉體的選擇 54
3-2-4 熱處理 59
3-3 分析與測量 61
3-3-1 磁性量測 61
3-3-2 金相觀察 61
3-3-3 掃描式電子顯微鏡SEM- EDX影像與成分分析 62
3-3-4 電子微探儀(EPMA)影像與成分分析 62
第四章 實驗結果與討論 63
4-1 沾覆粉體A對磁石D本質矯頑磁力iHc提升的影響 63
4-1-1 持溫時間對磁石D (5 mm)本質矯頑磁力iHc提升的影響 63
4-1-2 磁石厚度對本質矯頑磁力iHc提升的影響 66
4-1-3 微觀結構與成分分析 69
4-2 轉印不同厚度薄膜A觀察其對磁石D本質矯頑磁力iHc提升的影響 71
4-2-1 定量塗佈對磁石D(2 mm)本質矯頑磁力iHc提升的影響 71
4-2-2 定量塗佈對磁石D (3.2 mm)本質矯頑磁力iHc提升的影響 73
4-2-3 定量塗佈對磁石D (5 mm)本質矯頑磁力iHc提升的影響 75
4-3 粉體A、B結晶度與粒徑對本質矯頑磁力iHc提升的影響 78
4-4 粉體C結晶度與粒徑對本質矯頑磁力iHc提升的影響 88
4-5 不同厚度薄膜B厚度對磁石E(3.2 mm)本質矯頑磁力iHc提升的影響 93
第五章 結論 96
參考文獻 98

[1]何開元, "精密合金材料學 " 北京冶金工業出版社, p. 85, 1991.
[2]J. Hall, A. Fenochi, and M. Eternad, Workshop on RE magnets & their application 13th Int., 1994.
[3]G. Hoffer and K. Strnat, "Magnetocrystalline anisotropy of YCo5 and Y2Co17," Magnetics, IEEE Transactions on, vol. 2, pp. 487-489, 1966.
[4]K. Strnat, G. Hoffer, J. Olson, W. Ostertag, and J. J. Becker, "A Family of New Cobalt‐Base Permanent Magnet Materials," Journal of Applied Physics, vol. 38, pp. 1001-1002, 1967.
[5]W. M. Hubbard, E. Adams, and J. V. Gilfrich, "Magnetic Moments of Alloys of Gadolinium with Some of the Transition Elements," Journal of Applied Physics, vol. 31, pp. S368-S369, 1960.
[6]K. J. Strnat, "Cobalt," vol. 36, p. 133, 1967.
[7]E. A. Nesbitt, R. H. Willens, R. C. Sherwood, E. Buehler, and J. H. Wernick, "NEW PERMANENT MAGNET MATERIALS," Applied Physics Letters, vol. 12, pp. 361-362, 1968.
[8]W. A. J. J. Velge and K. H. J. Buschow, "Magnetic and Crystallographic Properties of Some Rare Earth Cobalt Compounds with CaZn5 Structure," Journal of Applied Physics, vol. 39, pp. 1717-1720, 1968.
[9]K. H. J. Buschow, "Philips Tech Rev," vol. 29, p. 1717, 1968.
[10]D. Das, "Twenty million energy product samarium-cobalt magnet," Magnetics, IEEE Transactions on, vol. 5, pp. 214-216, 1969.
[11]B. M. G., "Cobalt," vol. 50, p. 11, 1971.
[12]D. L. Martin, "Cobalt," vol. 50, p. 11, 1971.
[13]A. C. Epmopehko, Magnetics, IEEE Transactions on, vol. 17, p. 499, 1973.
[14]R. K. Mishra, G. Thomas, T. Yoneyama, A. Fukuno, and T. Ojima, "Microstructure and properties of step aged rare earth alloy magnets," Journal of Applied Physics, vol. 52, pp. 2517-2519, 1981.
[15]A. E. Clark and H. S. Belson, "Magnetostriction of Tb‐Fe and Tb‐Co Compounds," AIP Conference Proceedings, vol. 5, pp. 1498-1498, 1972.
[16]A. E. Clark, H. S. Belson, and N. Tamagawa, "Magnetocrystalline Anisotropy in Cubic Rare Earth‐Fe2 Compounds," AIP Conference Proceedings, vol. 10, pp. 749-753, 1973.
[17]J. J. Croat, "Preparation and coercive force of melt‐spun Pr‐Fe alloys," Applied Physics Letters, vol. 37, pp. 1096-1098, 1980.
[18]J. J. Croat, "Magnetic properties of melt‐spun Pr‐Fe alloys," Journal of Applied Physics, vol. 52, pp. 2509-2511, 1981.
[19]J. J. Croat, "Observation of large room‐temperature coercivity in melt‐spun Nd0.4Fe0.6," Applied Physics Letters, vol. 39, pp. 357-358, 1981.
[20]N. C. Koon and B. N. Das, "Magnetic properties of amorphous and crystallized (Fe0.82B0.18)0.9Tb0.05La0.05," Applied Physics Letters, vol. 39, pp. 840-842, 1981.
[21]J. J. Becker, "Rapidly quenched metals for permanent magnet materials (invited)," Journal of Applied Physics, vol. 55, pp. 2067-2072, 1984.
[22]G. C. Hadjipanayis, R. C. Hazelton, and K. R. Lawless, "Cobalt‐free permanent magnet materials based on iron‐rare‐earth alloys (invited)," Journal of Applied Physics, vol. 55, pp. 2073-2077, 1984.
[23]M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, and Y. Matsuura, "New material for permanent magnets on a base of Nd and Fe (invited)," Journal of Applied Physics, vol. 55, pp. 2083-2087, 1984.
[24]A. E. Clark, "High‐field magnetization and coercivity of amorphous rare‐earth‐Fe2 alloys," Applied Physics Letters, vol. 23, pp. 642-644, 1973.
[25]A. E. Clark, H. S. Belson, and R. E. Strakna, "Elastic properties of rare‐earth‐iron compounds," Journal of Applied Physics, vol. 44, pp. 2913-2914, 1973.
[26]H. H. Stadelmaier and H. K. Park, Z. Metallkd, vol. 72, p. 417, 1981.
[27]J. J. Croat, J. F. Herbst, R. W. Lee, and F. E. Pinkerton, "Pr‐Fe and Nd‐Fe‐based materials: A new class of high‐performance permanent magnets (invited)," Journal of Applied Physics, vol. 55, pp. 2078-2082, 1984.
[28]D. J. Sellmyer, A. Ahmed, G. Muench, and G. Hadjipanayis, "Magnetic hardening in rapidly quenched Fe‐Pr and Fe‐Nd alloys," Journal of Applied Physics, vol. 55, pp. 2088-2090, 1984.
[29]L. Häggström, A. Seidel, and H. Fjellvåg, "Mössbauer studies of 57Fe-doped CrAs," Journal of Magnetism and Magnetic Materials, vol. 97, pp. 251-255, 1991.
[30]日本產經新聞四月十六日, 1991.
[31]R. D. S. o. N. D. Y. Kaneko and S. S. M. Co., 日本應用磁氣學會誌, vol. 24, p. 13, 2000.
[32]W. Rodewald, B. Wall, M. Katter, and K. Uestuener, "Topology of Nd-Fe-B magnets with a high energy density," Magnetics, IEEE Transactions on, vol. 39, pp. 2932-2934, 2003.
[33]A. Sakamoto, T. Hidaka, C. Ishizaka, N. Uchida, and A. Fukuno, Trans. Mater. Res. Soc. Jpn., vol. 29, pp. 1719–1722, 2004.
[34]Y. Matsuura, "Recent development of Nd–Fe–B sintered magnets and their applications," Journal of Magnetism and Magnetic Materials, vol. 303, pp. 344-347, 2006.
[35]J. F. Herbst, J. J. Croat, and W. B. Yelon, "Structural and magnetic properties of Nd2Fe14B (invited)," Journal of Applied Physics, vol. 57, pp. 4086-4090, 1985.
[36]J. F. Herbst, "R2Fe14B materials:Intrinsic properties and technological aspects " Reviews of Modern Physics, vol. 63, pp. 819-898, 1991.
[37]石富, "稀土永磁材料製備技術," 北京冶金工業出版社, 2007.
[38]M. Nakamura, M. Matsuura, N. Tezuka, S. Sugimoto, Y. Une, H. Kubo, and M. Sagawa, "Preparation of ultrafine jet-milled powders for Nd-Fe-B sintered magnets using hydrogenation-disproportionation-desorption&-recombination and hydrogen decrepitation processes," Applied Physics Letters, vol. 103, pp. 022404-022404-4, 2013.
[39]H. K. Park, Workshop on RE magnets & their application 16th Int., vol. 257, 2000.
[40]H. Nakamura, K. Hirota, M. Shimao, T. Minowa, and M. Honshima, "Magnetic properties of extremely small Nd-Fe-B sintered magnets," Magnetics, IEEE Transactions on, vol. 41, pp. 3844-3846, 2005.
[41]K. Hirota, H. Nakamura, T. Minowa, and M. Honshima, "Coercivity Enhancement by the Grain Boundary Diffusion Process to Nd-Fe-B Sintered Magnets," Magnetics, IEEE Transactions on, vol. 42, pp. 2909-2911, 2006.
[42]M. Komuro, Y. Satsu, and H. Suzuki, "Increase of Coercivity and Composition Distribution in Fluoride-Diffused NdFeB Sintered Magnets Treated by Fluoride Solutions," Magnetics, IEEE Transactions on, vol. 46, pp. 3831-3833, 2010.
[43]M. Komuro, Y. Satsu, and H. Suzuki, "Microstructure and Magnetic Properties of NdFeB Magnets Using Fluorides Nano-Coated Process," Materials Science Forum, vol. 638-642, pp. 1357-1361, 2010.
[44]H. Nakamura, K. Hirota, T. Ohashi, and T. Minowa, "Coercivity distributions in Nd–Fe–B sintered magnets produced by the grain boundary diffusion process," Journal of Physics D: Applied Physics, vol. 44, p. 064003, 2011.
[45]W. Tang, K. W. Dennis, M. J. Kramer, I. E. Anderson, and R. W. McCallum, "Studies of sintered MRE-Fe-B magnets by DyF3 addition or diffusion treatment (MRE = Nd + Y + Dy)," Journal of Applied Physics, vol. 111, pp. -, 2012.
[46]Z. Samardžija, P. McGuiness, M. Soderžnik, S. Kobe, and M. Sagawa, "Microstructural and compositional characterization of terbium-doped Nd–Fe–B sintered magnets," Materials Characterization, vol. 67, pp. 27-33, 2012.
[47]M. Soderžnik, K. Ž. Rožman, S. Kobe, and P. McGuiness, "The grain-boundary diffusion process in Nd–Fe–B sintered magnets based on the electrophoretic deposition of DyF3," Intermetallics, vol. 23, pp. 158-162, 2012.
[48]H. Sepehri-Amin, T. Ohkubo, and K. Hono, "The mechanism of coercivity enhancement by the grain boundary diffusion process of Nd–Fe–B sintered magnets," Acta Materialia, vol. 61, pp. 1982-1990, 2013.
[49]B. Kyoung-Hoon, K. Tae-Hoon, L. Seong-Rae, N. Seok, and J. Tae-Suk, "Magnetic and Microstructural Characteristics of a DyF3 Dip-Coated Nd-Fe-B Sintered Magnet," Magnetics, IEEE Transactions on, vol. 49, pp. 3251-3254, 2013.
[50]T. Mizoguchi, M. Sagawa, N. Iwata, H. Matsui, and A. Kimura, "Effect of the Impurity on Grain Boundary Diffusion to Sintered NdFeB Magnet Made by Press-less Process Method (Invited)," 2014 International Conference on NdFeB Magnets, pp. 154-157, 2014.
[51]N. BARRETT, "工程材料原理," 科技圖書股份有限公司, 1991.
[52]J. P. Schaffer, A. Saxena, S. D. Antolovich, T. H. S. Jr, and S. B. Warner, The Science and Design of Engineering Materials, 2nd Edition: WCB/McGraw-Hill, 1999.
[53]陳建甫, 晶界擴散法對燒結釹鐵硼磁石本質矯頑磁力提升之研究, 2013.
[54]N. M. S. El-Din and M. W. Sabaa, "Thermal degradation of poly(vinyl butyral) laminated safety glass," Polymer Degradation and Stability, vol. 47, pp. 283-288, 1995.
[55]J. D. Peterson, S. Vyazovkin, and C. A. Wight, "Stabilizing effect of oxygen on thermal degradation of poly(methyl methacrylate)," Macromolecular Rapid Communications, vol. 20, pp. 480-483, 1999.
[56]B. J. Holland and J. N. Hay, "The kinetics and mechanisms of the thermal degradation of poly(methyl methacrylate) studied by thermal analysis-Fourier transform infrared spectroscopy," Polymer, vol. 42, pp. 4825-4835, 2001.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔