(3.238.250.105) 您好!臺灣時間:2021/04/20 06:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王昱傑
研究生(外文):Yu-Chieh Wang
論文名稱:應用於一維/二維陣列天線系統之新式非對稱波束合成器設計
論文名稱(外文):Design of New Asymmetrical Beamformer Network for One/Two-Dimensional Phased Array Antenna
指導教授:張嘉展
指導教授(外文):Chia-Chan Chang
口試委員:張盛富張嘉展曾昭雄林祐生
口試委員(外文):Sheng-Fuh ChangChia-Chan ChangChao-Hsiung TsengYo-Shen Lin
口試日期:2014-07-15
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:142
中文關鍵詞:波束合成器
外文關鍵詞:beamformer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:276
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
傳統切換式波束相位陣列天線,利用波束之切換來達到收發訊號,可有效降低多重路徑傳輸效應,並提升系統的實用性,然欲達更多相位狀態,波束合成電路的階數也必須提高,電路尺寸與控制電路複雜度也相對增加。故本論提出一新式非對稱架構(N×2N)之波束合成器,利用相位合成與切換相位的機制,可在一維空間中切換±14.5º、±48.6º四種波束方向,此波束合成器電路包含四個子電路:(1)正交耦合器、(2)威爾金森功率分配器、(3)鼠競耦合器、(4)0º/180º切換式相移器。本論文首先將電路實現於PCB板,在2.2-2.6 GHz頻段內輸出功率分布為7.9±2.1 dB,輸出相位差分別為39.2º± 5º、50º± 8º、-140.3º±10º、127.6º±11º。此電路亦利用CMOS製程, 亦利用TSMC CMOS 0.18-μm製程實現,分別設計2.4 GHz及24 GHz晶片,其平均插入損耗分別為6.4±3 dB及4.3±2 dB,而相差分佈各為132º±20º、-152º±7º、41.3º±5º、-48.3º±7º與126º±6º、-139º±0.5º、37º±10º、-49º±2º。將此波束合成電路配合4×4平面陣列天線,建構2.45 GHz二維陣列天線,可在空間中產生16個正交特徵波束, 並透過相鄰波束合成出另外9種波束,以增加相列天線在二維空間的解析度,量測天線增益14.5dBi至10.8dBi。相較傳統4階巴特拉矩陣波束合成器需要8組一維電路去建構二維架構,本系統只需6組一維電路即可完成,饋入開關網路亦可簡化,將可節省近25%之面積。

A traditional switched beamformer phase array was design which used beam switching to achieve transceiver signal, to reduce multi-path effects and to improve system availability. If want to more phase status, the order of the beamformer circuit must be increased, the circuit size and complexity of the control circuit is also relatively increased.
In this thesis, a asymmetric structure (N × 2N) of the beamformer, which used the technique of phase synthesis and switched shifter to generate ±14.5º、±48.6º four different switched beams in one-dimensional. The beamformer circuit includes four sub-circuit: (1) quadrature coupler, (2) Wilkinson power divider, (3) rat race coupler, (4) 0º / 180º switching phase shifter. First, the circuit implementation on the PCB board, in 2.2-2.6 GHz output power distribution is 7.9±2.1 dB, output phase difference were 39.2º±5º, 50º±8º, -140.3º±10º, 127.6º±11º. This circuit use CMOS process, also using TSMC CMOS 0.18-μm process implementation, were designed 2.4 GHz and 24 GHz chip, the average insertion loss was 6.4±3 dB and 4.3 ±2 dB, while the difference between the distribution of each 132º±20º , -152º±7º, 41.3º±5º, -48.3º±7º and 126º±6º, -139º±0.5º, 37º±10º, -49º±2º.
This beamformer with 4 × 4 array of 2.45 GHz planar antennas to construct a two-dimensional array antenna. It can generate 16 orthogonal characteristical beam and another nine kinds of beams were synthesized by adjacent beams, in order to increase the phase array antenna of resolution for two-dimensional space.
Measured of antenna gain were 14.5 dBi to 10.8 dBi. Compared to traditional four-order Butler matrix beamformer requires eight one-dimensional circuits to construct a two-dimensional structure, the system only need six circuits to complete a two-dimensional circuit. Feeding switched networks are also simplified will be able to save nearly 25 % of the area.

第一章 緒論
1.1 研究背景與動機
1.2 波束合成器之文獻探討
1.3 非對稱式波束合成器與一般巴特拉矩陣之比較
1.4 論文架構與貢獻
第二章 新式非對稱波束合成器
2.1 新式非對稱波束合成器簡介
2.2 新式波束合成器工作原理
2.3 電路設計
2.3.1 90º接地式共平面波導型寬邊耦合器設計
2.3.2 威爾金森功率分配器設計
2.3.3 鼠競耦合器之設計
2.3.4 0º/180º切換式相移器
2.4 新式波束合成器實作與量測
第三章 CMOS非對稱波束合成器之設計
3.1 CMOS非對稱波束合成器簡介
3.2 S-band CMOS非對稱波束合成器設計
3.2.1 S-band CMOS非對稱波束合成器佈局與量測考量
3.2.2 S-band CMOS非對稱式波束合成器模擬與量測結果討論
3.2.3 CMOS波束合成器之文獻比較
3.3 K-band CMOS非對稱波束合成器
3.3.1 K-band CMOS非對稱波束合成器設計
3.3.2 電路布局與模擬結果
3.3.3 CMOS波束合成器之文獻比較
第四章 非對稱波束合成器應用於二維相列天線
4.1 二維波束產生
4.2 波束切換之量測結果
4.3 多波束相位陣列天線
4.4 多波束相位陣列天線量測
4.4.1 正交特徵波束之量測結果
4.4.2 兩相鄰與四相鄰之特徵波束合成量測結果
第五章 結論與展望
附錄I
新式波束合成器相位補償與分析討論
附錄II
參考文獻
[1]洪聖壹 (民102年5月21日)三星 5G 行動飆網預計 2020年實現。ETtoday3C新聞。取自
http://www.ettoday.net/news/20130521/210774.htm
[2]O. Boric-Lubecke, G. Awater, and V. M. Lubecke, "Wireless LAN PC card sensing of vital signs," in IEEE
Topical Conference on Wireless Communication Technology, 2003, pp. 206-207.
[3]J. C. Liberti, Jr. Bellcore, Theodore S. Rappaport, Smart Antennas for Wireless Communications: IS-95 and
Third Generation CDMA Applications, April 12, 1999.
[4]M. Ben Kilani, M. Nedil, N. Kandil, T. A. Denidni, “Novel wideband multilayer Butler matrix using CPW
technology,” in IEEE Antennas and Propagation Society International Symposium, 2012 , pp. 1 – 2.
[5]N. A. Murad, M. J. Lancaster, Y. Wang and M. L. Ke, “Micromachined millimeter-wave Butler matrix with a
patch antenna array,” in 2009 IEEE Mediterrannean Microwave Symposium, 2009 , pp.1 – 4.
[6]G. Tudosie, R. Vahldieck, and A. Lu, “A novel modularized folded highly compact LTCC Butler matrix,” in 2008
IEEE MTT-S International Microwave Symposium, June 2008 , pp. 691 – 694.
[7]C. C. Chang, T. Y. Chin, J. C. Wu, and S. F. Chang, “Novel Design of a 2.5-GHz Fully Integrated CMOS Butler
Matrix for Smart-Antenna Systems,” IEEE Trans. on Microw. Theory Tech., vol. 56, no. 8, pp. 1757 – 1763,
Aug. 2008.
[8]蔡其成,二維相列天線之波束合成控制器設計,碩士論文,電機工程研究所,國立中正大學,民國101年。
[9]S. Gruszczynski, K. Wincza, K. Sachse, “Reduced Sidelobe Four-Beam N-Element Antenna Arrays Fed by 4 times N
Butler Matrices” IEEE Antennas and Wireless Propagation Letters, vol.5 , pp. 430 – 434, Dec. 2006.
[10]M. Koubeissi, L. Freytag, C. Decroze, T. Monediere, “Design of a Cosecant-Squared Pattern Antenna Fed by a
New Butler Matrix Topology for Base Station at 42 GHz,” IEEE Antennas and Wireless Propagation Letters,
vol.7, pp. 354 – 357, 2008.
[11]李瑋仁,四波束切換式智慧型陣列天線之研製,碩士論文,電機工程學系,國立中山大學,民國92年。
[12]K. Wincza, K. Sachse, “Broadband 4×4 Butler matrix in microstrip multilayer technology designed with the
use of three-section directional couplers and phase correction Networks,” in Microwave Radar and Wireless
Communications, 2010, pp. 1 – 4.
[13]蔡錦豐,應用於WiMAX/4G系統之相位天線陣列設計,碩士論文,電機工程研究所,國立中正大學,民國97年。
[14]C. P. Chang, J. C. Chiu, H. Y. Chiu, and Y. H. Wang“A 3-dB Quadrature Coupler Using Broadside-Coupled
Coplanar Waveguides,” Microw. Wireless Compon. Lett., vol. 18, pp. 191 – 193, Mar. 2008.
[15]W. J. Lu, K. S. Ang, Mouthaan, K, “A Wideband Compact Broadside Coupler-based Impedance Transformer with
6:1 Bandwidth,” in Microw. Conf., 2012, pp. 376 – 379.
[16]ADS(Advanced Design System)2009.
[17]David M. Pozer, Microwave Engineering, John Wiley, 2005.
[18]A. Kosc, A. D. Maria, M. Limbach, R. Horn, A. Reigber, “A 5 way lumped-elements Wilkinson power divider,”
in European Conference Antennas and Propagation, 2013 , pp. 357 – 360.
[19]T. Kawai, H. Mizuno, I. Ohta, A. Enokihara, “Lumped-Element Quadrature Wilkinson Power Divider,” in Asia-
Pacific Microwave Conf., Dec. 2009, pp. 1012 – 1015.
[20]K-K. M. Cheng, M. C. J. Chik, “A Frequency-Compensated Rat-Race Coupler With Wide Bandwidth and Tunable
Power Dividing Ratio,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 8, pp. 2841 – 2847, Aug. 2013.
[21]徐翊豪,具低植入損耗變動與寬相位調整之射頻反射式相移器設計,碩士論文,電機工程研究所,國立中正大學,民國95年。
[22]J. H. Kim, D. W. Woo, G. Y. Jo, and W. S. Park, “Microstrip Phase Inverter using Slotted Ground,” in 2010
Antennas and Propagation Society International Symposium, 2010, pp. 1 – 4.
[23]Data Sheet, “SKYWORK AS214-92LF:PHEMT GaAs IC SPDT Switch 0.1 – 3 GHz” SKYWORKS.
[24]C. C. Chang, T. Y. Chin, J. C. Wu, S. F. Chang, “Novel Design of a 2.5-GHz Fully Integrated CMOS Butler
Matrix for Smart-Antenna Systems,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp. 1757 – 1763 ,
Aug. 2008.
[25]B. Cetinoneri, Y. A. Atesal, G. M. Rebeiz, “An 8×8 Butler Matrix in 0.13 - CMOS for 5–6-GHz Multibeam
Applications,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 2, pp. 295 – 301, Feb. 2011.
[26]B. Cetinoneri, Y. A. Atesal, J. G. Kim, G. M. Rebeiz, “CMOS 4×4 and 8×8 Butler matrices,” in 2010 IEEE
MTT-S International Microwave Symposium, May 2010 , pp. 69 – 72.
[27]I. Haroun, T. Y. Lin, D. C. Chang, C. Plett,“A compact 24–26 GHz IPD-based 4×4 Butler matrix for beam
forming antenna systems,” in Asia-Pacific Microwave Conf., Dec. 2012, pp. 965 – 967.
[28]C. C. Chang, T. Y. Chin, J. C. Wu, S.F. Chang, “A 24-GHz CMOS Butler Matrix MMIC for Multi-Beam Smart
Antenna Systems,” in IEEE Radio Frequency Integrated Circuits Symposium, Jun. 2008, pp. 633 – 636.
[29]謝亞儒,二維多波束相列天線之設計,碩士論文,電機工程研究所,國立中正大學,民國100年。
[30]W. L. Stutzman, G. A. Thiele, Antenna Theory and Design, New York: John Wiley & Sons, 2013

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔