跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/26 22:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖仁呈
研究生(外文):Jen-Cheng Liao
論文名稱:地下電纜之傳輸容量與感應電壓分析
論文名稱(外文):Ampacity and Induced Voltage Analysis for Underground Cable System
指導教授:張文恭
指導教授(外文):Gary W. Chang
口試委員:張文恭吳元康浦冠志許炎豐黃明進
口試委員(外文):Gary W. ChangYuan-Kang WuGuan-Chih PuYen-Feng HsuMing-Chin Huang
口試日期:2014-07-15
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:79
中文關鍵詞:送電容量集膚效應近接效應感應電壓突波電壓限制器增容導體
外文關鍵詞:AmpacitySkin effectProximity effectInduced voltageSheath voltage limiterEnamelled stranded conductor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:417
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
地下電纜之導體會受到集膚效應與近接效應所產生之交流電阻影響,當截面積達到2000 以上,交流效應更加顯著,導體損失對於送電容量影響甚大,而高壓電纜金屬遮蔽層之感應電壓過高或感應暫態電壓時,電纜被覆層有擊穿之風險,所以電纜金屬遮蔽層必須安裝被覆電壓限制器來抑制過電壓,因此提高導體送電容量探討與遮蔽層感應電壓的掌控而維持線路安全的議題便相當重要。
本論文的主要目的在於研究提升地下電纜之送電容量,並在實際的345kV系統下探討故障時的感應電壓,在本研究中,首先利用理論探討交流效應並以現有規範計算交流電阻與送電容量,並實際測量電纜溫度與送電容量之關係。接著模擬最嚴重之單相接地故障探討其感應電壓對保護元件的影響,經由模擬結果,可對地下電纜導體與系統設計提供建議。

The Ampaicty of underground cable is reduced dramatically by the effects of alternating current effects called d skin and proximity effects. Alternating current effect is quite remarkable when the cross-sectional area reaches more than 2000 . The losses of conductor that affect ampacity has become of interests. Both of induced voltage and intrusion surge voltage on sheath of high voltage underground transmission system is high, it maybe damage the sheath insulation. Therefore, the study of increasing ampacity and controlling induced voltage becomes important.
In the thesis, a brief review of electromagnetic theories and the factors of alternating current resistance have study. For AC resistance calculation, the increase of ampacity of conductor and alternating current effects has been demonstrated and meets the design value. Single-line ground faults on 345kV underground cable system have been study and simulation. The results are benefit for impact study of induced voltage on sheath of underground cable system. The results are observed and suggestions are benefit sheath voltage limiter design. It clarify the concept of induced transient overvoltage and fault current induced voltage on underground transmission system.

ACKNOWLEDGMENTS i
中文摘要 ii
ABSTRACT iii
TABLE OF CONTENTS iv
LIST OF FIGURES v
LIST OF TABLES vi
I. INTRODUCTION 1
1.1 Background and Motive 1
1.2 Organization of Thesis 2
II. OVERVIEW OF THEORIES ASSOCIATED WITH ALTERNATING CURRENT RESISTANCE 4
2.1 Ampere’s Law 4
2.2 Faraday’s Law 7
2.2.1 Proximity Effect of Stranded conductor 8
2.3 Gauss’s Magnetic Law 9
2.4 Electromagnetic Waves Theorem 13
2.5 Electromagnetic Waves Propagation in Different Media 18
2.6 Lenz’s Law with Alternating Current Effect 21
2.6.1 Describe Skin Effect and Proximity Effect by Lenz’s Law 21
III. ALTRENATING CURRENT RESISTANCE CALCULATION AND MEASUREMENT FOR UNDERGROUND CABLE 24
3.1 The Design of Conductor to Reduce AC Resistance 24
3.1.1 Milliken segment stranded conductor 24
3.1.2 Oxidized Milliken 24
3.1.3 Enamelled stranded conductor 25
3.2 The Structure of Underground Cables 26
3.3 Calculation of AC Resistance based on IEC 60287 31
3.4 Calculation of AC Resistance based on CIGRE TB 272 34
3.5 Actual Measurement 42
IV. SELECTION OF SHEATH VOLTAGE LIMITER FOR UNDERGROUND CABLE SYSTEM 48
4.1 Introduction 48
4.2 Sheath Voltage Limiter 49
4.2.1 Characteristics of SVL 49
4.2.2 Test for SVL 52
4.3 System Conditions 53
4.4 Simulation and Analysis Results for Underground Cable 55
4.4.1 Case1: 5kV SVL subject to 18kA of Fault Current 55
4.4.2 Case2: 5kV SVL subject to 36kA of Fault Current 58
4.4.3 Case3: 5kV SVL subject to 63kA of Fault Current 62
4.4.4 Case4: 8kV SVL subject to 63kA of Fault Current 66
4.4.5 Case5: 10kV SVL subject to 63kA of Fault Current 70
V. CONCLUSIONS AND FUTURE WORK 75
5.1 Conclusions 75
5.2 Future work 76
REFERENCES 77
VITA 80

[1]S. Umeda, N. Ishii and N. Horiguchi etc, “Underground Power Cable, Distribution Cable, Overhead Transmission Line, Industrial Cable and Their Accessories,” Furukawa Review, No.32, 2007.
[2]“Managing grid integrity and affordability in a changing world,” An executive overview, 3M Electrical Markets Division
[3]Y. Chen, W. H. Jiang, Q. J. Zhao, X. Li, and J. X. Lu, “Application of 2 bundle large section conductors in double circuit AC transmission lines,” Electric Power Construction,May 2010.
[4]David K. Cheng, “Field and Wave Electromagnetics, Second Edition,” Addison- Wesley Publishing Company, Pages 307-371, 1989.
[5]“Transmission lines III,” CMPE 650: Digital Systems Design, UMBC, [Online] Available: http://www.ece.unm.edu/~jimp/650/slides/transmission_lines3.pdf.
[6]M. A Prsa, N. D Mucalica, “Skin effect and Proximity Effect in a Real, High Voltage, Double Three-Phase System,” Proceedings of the IEEE International Conference on Computer as a Tool (EUROCON), April, 2011.
[7]GIGRE Working Group B1.03, TB 272, “Large cross-section and composite screens design,” June 2005.
[8]“High and extra high voltage power cable systems 63 to 500kV” Silec cable leaflet.
[9]A. Toya, T. Kuramochi, “66kV compact triplex-type XLPE cable),” Fujikura Technical Review, 2000.
[10]D. Dubois, P. Mirebeau, “The use of insulated wires Milliken conductors in high voltage power transmission underground AC lines,” Jicable France, 2007.
[11]“60-500kV high voltage underground power cables XLPE insulated cables,” , 2011. [Online]. Available: http://www.nexans.com/Corporate/2013/60-500_kV_High_Voltage_full_BD2.pdf.
[12]Electric Cable, Calculation of the current rating- Part 1: Current rating equation (100% load factor) and calculation of losses – Section 1: General. IEC Standard 60287-1-1.
[13]P. Mirebeau, J. Matallana, F. Gahungu, D. Dubois, “Qualification for a 420kV XLPE cable system with a 2500mm2 Cu Milliken conductor with insulated wires,” ICC spring 2005. [Online.] Available: http://www.pesicc.org/iccwebsite/subcommittees/subcom_a/Presentations/Fall06/A-9-Mirebeau.pdf.
[14]“Development of 400kV 2500mm2 CU XLPE cable & accessories- study for individual wire coated large conductor,” Taihan, 2009. [Online.] Available: http://www.pesicc.org/iccwebsite/subcommittees/subcom_c/Presentations/2009Fall/C-2-400kVEnameledCopperConductorCableandAccessories.pdf.
[15]F. Ghassemi, “Effect of Trapped Charges on Cable SVL Failure,” Proceedings of the Power Systems Transients (IPST2013), Vancouver, Canada, July 18-20, 2013.
[16]P. Nichols, “Minimum Voltage Rating of Sheath Voltage Limiters in Underground Cable Systems: The Influence of Corrugated Cable Sheaths,” Proceedings of the 47th Universities Power Engineering Conference (UPEC), 2012.
[17]“Metal Oxide Varistor: Introduction,” May, 2014. [Online.] Available: http://www.thinking.com.tw/documents/en-varistor-introduction.pdf.
[18]Y. Y. Wang, R. G. Chen, J. Li, S. Grzybowski, T. Jiang, “Analysis of Influential Factors on the Underground Cable Ampacity,” proceedings of the Electrical Insulation Conference, Annapolis, Maryland, 5 to 8 June 2011.
[19]A. A. Ghandakly, “Ampacity Ratings of Bundled Cables for Heavy Current Applications,” IEEE Trans. on Industry Application, vol. 30, No. 2, April 1994.
[20]A. A. Ghandakly, R. L. Curran, “A Model to Predict Current Distributions in Bundled Cables for Electric Glass Melters,” IEEE Trans. on Industry Applications, vol. 26, No. 6, December 1990.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top