|
[1] C.-H. Cho, On the Computation of the Numerical Blow-up Time. Method Partial Dif- ference. To appear in Japan J. Indust. Appl. Math. [2] C.-H. Cho, S. Hamada and H. Okamoto, On the Finite Dierence Approximation for a Parabolic Blow-up Problem. Japan J. Appl. Math. 24 (2007), 475-498. [3] C.-H. Cho and H. Okamoto, Further Remerks on Asymptotic Behavior of the Numerical Solutions of the Parabolic Blow-up Problems. Meth. Appl. Anal. 14 (2007), 213-226. [4] Nakagawa, T., Blowing up of a Finite Dierence Solution to ut = uxx+u2. Appl. Math. Optim. 2 (1976), 337-350. [5] Y.-G. Chen, Asymptotic Behaviours of Blowing-up Solutions for Finite Dierence Ana- logue of ut = uxx + u1+. J. Fac. Sci., Univ. Tokyo 33 (1986), 541-574. [6] P. Groisman, Totally Discrete Explicit and Semi-implicit Euler methods for a Blow-up Problem in Several Space Dimensions. Computing, 76 (2006), 325-352. [7] C.-F. Chang, A Finite Dierence Scheme for Blow-up Solutions of the Convective Reaction-diusion Eequations. Math Thesis. [8] T.-F. Chen, Levine H. A., and Sacks P. E.: Analysis of a convective reaction-diusion equation. Nonlinear Anal. Theor. Meth. Appl. 12, (1988), 1394-1370. [9] K. Deng and H.A Levine, The Role of Critical Exponents in Blow-up Theorems: The Sequal, J. Math. Anal. Appl., 243 (2000), pp. 85-126. [10] A. Friedman and B. BcLeod, Blow-up of Positive Solutions of Semilinear Heat Equa- tions, Indiana Univ. Math. J., 34 (1985), pp. 425-447. [11] S. Ito, On Blow-up of Positive Solutions of Semilinear Parabolic Equations, J. Fac. Sci. Univ. Tokyo, Sect. IA, 37 (1990), pp. 527-536 [12] L.Abia, J.C. Lopez-Marcos, J. Martnez, The Euler method in the numerical integration of reaction-diusion problem with blow-up, Appl. Numer. Math., 38 (2001) 287-313. 17
|