跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/26 23:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳仲傑
研究生(外文):ZHONG-JIE WU
論文名稱:不同材質軟墊之微觀機械性質對軟墊研磨界面效應之影響
論文名稱(外文):Effects of Micro-Mechanical Properties on Polishing Interfacial Phenomena of Polish Pad with Different Material
指導教授:鄭友仁
指導教授(外文):Yeau-Ren Jeng
口試委員:邱源成李榮宗黃培堯
口試委員(外文):YUAN-CHENG QIURONG-ZONG LIPEI-YAO HUANG
口試日期:2014-07-24
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程學系暨研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:76
中文關鍵詞:研磨軟墊微觀機械性質拋光
外文關鍵詞:Soft PadMicro-Scale Mechanical PropertyPolishing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
精密研磨製程通常需要使用研磨軟墊,研磨的技術自新石器時代即使用於青銅鏡及玉飾品的鏡面磨光,近年來更廣泛地應用於精密加工上,像是光學鏡片、滾珠螺桿,甚至半導體晶圓等材料表面的精密加工。而軟墊研磨中最具代表性的就是化學機械研磨,化學機械研磨是軟墊與工件呈相對運動並搭配研磨液,達到拋光研磨的效果,本研究主要探討不同材質軟墊機械性質的差異對軟墊研磨界面效應的影響,建立一套軟墊選用的準則。
在進行上,本研究選用發泡類及纖維類二類研磨軟墊,透過微觀動態機械分析方法(Nano Dynamic Mechanical Analysis, Nano-DMA)量測軟墊的機械性質,並用探針模擬實際研磨時軟墊的受力情況,進而測得軟墊在實際研磨情況下的機械性質,再將全新軟墊進行研磨,觀察軟墊經過研磨過後其機械性質的變化情況,探討不同材質軟墊的老化現象的差異。理論部分,本研究藉由力學接觸模型來推算材料粗糙峰移除的情況,將實驗所量測的機械性質套進理論模型,分析不同材質之全新軟墊機械性質與經過研磨後軟墊機械性質的變化,探討軟墊機械性質對材料移除情況的影響。
本研究結果發現發泡類軟墊其機械性質較軟,針對粗糙峰起伏大的工件時,能使工件有效達到平坦化效果,且壽命較長,本研究推斷軟墊的孔隙為影響壽命的可能原因,另外纖維類軟墊其機械性質較硬,針對粗糙峰起伏小且密集的工件時,能使工件達到拋光的效果,不過其壽命較短。
本研究將以往軟墊選用的經驗及由測試與邏輯現象的觀察,歸納成有理論根據的科學觀點,整理出一套研磨軟墊針對材料粗糙峰等級之選用規則,可做為業界在軟墊研磨製程開發設計的參考,並提供軟墊研磨製程相關參數調控及工具機設計開發之準則。

A soft pad has been used to polish high quality fine surfaces since ancient times. The drive for precision components and miniaturized devices in recent decade renders the use of soft pad polishing necessary for a wide array of applications including precision machine components, optical devices and semiconductor wafers. Chemical-mechanical polishing is widely used for polishing. Chemical-mechanical polishing is a relative motion with pad and work-piece. This can achieve the effect of polishing. This study mainly investigates the effects of differences in the mechanical properties of the material for the effect of the polishing interfacial phenomena which establishes a criteria selection of pad.

In this study, we chose PU pad and fiber pad, measure the mechanical properties by Nano Dynamic Mechanical Analysis, simulate the actual polishing pad’s forcing condition with the probe, and thus obtain the pad’s mechanical properties under the polishing condition. Later we need the new pad,for polishing observed the changes in the pad’s mechanical properties so that exploring the different decaling phenomena between different kinds of pads. In the theoretical part of the study, we calculate the condition of material removed by micro-contact model, set the mechanical properties measuring from experimental into the theoretical model, and then analyze the changes of mechanical properties between the new pad and the polishing pad to explore the effect of the pads’ mechanical properties with the removal condition.

The results of this study revealed that the mechanical properties of the PU pad is relatively soft, undulating larger roughness peaks against the work-piece which can effectively achieve the planarization and longer lifetime. Hence we concluded that the possible reason of affecting lifetime is the pad’s pores, and the fiber pad’s mechanical property is harder, undulating smaller and concentrated roughness peaks can enable the work-piece to achieve polished results, but its lifetime is shorter.

中文摘要 I
Abstract III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1-1 前言 1
1-2軟墊研磨簡介 2
1-3研究目的 7
第二章 研磨軟墊之特性 10
2-1 軟墊材料簡介 10
2-2研磨軟墊之黏彈現象 11
第三章 實驗程序 15
3-1實驗設備簡介 15
3-1-1軟墊研磨製程平台簡介 15
3-1-2微觀動態機械分析試驗 16
3-2實驗方法 18
3-2-1試片準備 20
3-2-2軟墊研磨製程平台參數設定 21
3-2-3微觀動態機械分析試驗負載條件的設定 21
3-2-4 實驗流程 22
第四章 實驗結果與分析 31
4-1靜態負載之改變 31
4-2動態負載之改變 32
4-3發泡類軟墊(PU100)研磨過後實驗結果分析 32
4-4 發泡類軟墊(IC1000)研磨過後實驗結果分析 33
4-5纖維類軟墊(SB660)研磨過後實驗結果分析 33
4-6纖維類軟墊(Suba)研磨過後實驗結果分析 34
4-7不同材質研磨軟墊之實驗探討 34
第五章 軟墊研磨製程平坦化效應之驗證 與粗糙峰移除過程模擬 46
5-1工件表面粗糙峰與研磨軟墊之接觸面積及接觸壓力[28] 46
5-2研磨顆粒、軟墊與粗糙峰的力平衡模型[28] 48
5-3 研磨界面間有效研磨顆粒數目[28] 50
5-4材料移除率[28] 52
5-5 軟墊模數應用與粗糙峰移除過程模擬[28] 53
5-6 不同材質研磨軟墊之平坦化探討 55
5-6-1 發泡類研磨軟墊(PU100) 55
5-6-2發泡類研磨軟墊(IC1000) 56
5-6-3纖維類研磨軟墊(SB660) 57
5-6-4 纖維類研磨軟墊(Suba) 58
5-7不同材質研磨軟墊之平坦化探討 59
第六章 結論與未來展望 72
6-1 結論 72
6-2未來展望 73
參考文獻 74

3-2-4 實驗流程 22
第四章 實驗結果與分析 31
4-1靜態負載之改變 31
4-2動態負載之改變 32
4-3發泡類軟墊(PU100)研磨過後實驗結果分析 32
4-4 發泡類軟墊(IC1000)研磨過後實驗結果分析 33
4-5纖維類軟墊(SB660)研磨過後實驗結果分析 33
4-6纖維類軟墊(Suba)研磨過後實驗結果分析 34
4-7不同材質研磨軟墊之實驗探討 34
第五章 軟墊研磨製程平坦化效應之驗證 與粗糙峰移除過程模擬 46
5-1工件表面粗糙峰與研磨軟墊之接觸面積及接觸壓力[28] 46
5-2研磨顆粒、軟墊與粗糙峰的力平衡模型[28] 48
5-3 研磨界面間有效研磨顆粒數目[28] 50
5-4材料移除率[28] 52
5-5 軟墊模數應用與粗糙峰移除過程模擬[28] 53
5-6 不同材質研磨軟墊之平坦化探討 55
5-6-1 發泡類研磨軟墊(PU100) 55
5-6-2發泡類研磨軟墊(IC1000) 56
5-6-3纖維類研磨軟墊(SB660) 57
5-6-4 纖維類研磨軟墊(Suba) 58
5-7不同材質研磨軟墊之平坦化探討 59
第六章 結論與未來展望 72
6-1 結論 72
6-2未來展望 73
參考文獻 74

1.錢憲和 和 方建能, 史前琢玉工藝技術. 2003.
2.邱福海, 古玉簡史,史前篇. 1993.
3.Marinescu, I.D., E. Uhlmann, and T.K. Doi, Handbook of lapping and polishing, 2007.
4.http://www.astrosurf.com/gap47/T400/Machine/
5.Preston, F.W., ”The Theory and Design of Plate Glass Polishing Machines”, J. Soc. Glass Tech., 1927. 11: p. 214.
6.Archard, J.F., ”Contact and Rubbing of Flat Surfaces, Journal of Applied Physics”, 1953. 24: p. 981-985.
7.王建榮, 林必窕, and 林慶福, 半導體平坦化技術. 2000.
8.Tseng, W.T. and Y.L. Wang, ”Re-examination of Pressure and Speed Dependences of Removal Rate during Chemical Mechanical Polishing Process”, J. Electrochem. Soc., 1997. 114(2).
9.Tseng, W.T., J.H. Chin, and L.C. Kang, ”A Comparative Study on the Roles of Velocity in the Material Removal Rate During Chemical Mechanical Polishing”, J. Electrochem. Soc., 1999. 146(5): p. 1952-1959.
10.Zhang, F. and A. Busnaina, ”The Role of Partical Adhesion and Surface Deformation in Chemical Mechanical Polishing Processes”, Electrochem. and Solid-State Letters, 1998. 1(4).
11.Luo, J. and D.A. Dornfeld, ”Material Removal Mechanism in Chemical Mechanical Polishing”, IEEE Transaction on Semiconductor Manufacturing, 2001. 14(2).
12.Zhao, Y. and L. Chang, ”A Micro-Contact and Wear Model for Chemical Mechanical Polishing of Silicon Wafers”, Wear, 2002. 252: p. 220-226.
13.Jeng, Y.R. and P.Y. Wang, ”An Elliptical Microcontact Model Considering Elastic, Elastoplastic and Plastic Deformation”, Transactions of the ASME, Journal of Tribology, 2003. 125(2): p. 232-240.
14.Chang, W.R., I. Etsion, and D.B. Bogy, ”An Elastic-Plastic Model for the Contact of Rough Surfaces”, ASME Journal of Tribology, 1987. 110: p. 50-56.
15.Halling, J.I. and K.A. Nuri, ”The Elastic-Plastic Contact of Rough Surfaces and Its Relevance in Study of Wear”, Proc. Instn. Mech. Engrs., 1988. 202(No. C4): p. 269-274.
16.Powierza, Z.H., T. Klimczak, and A. Polijaniuk, ”On the Experimental Verification of the Greenwood-Williamson Model for the Contact of Rough Surface”, Wear, 1999. 154: p. 115-124.
17.Pulle, J. and J.B.P. Williamson, ”On the Plastic Contact of Rough Surface”, Proceedings of the Royal Society of London, 1972. A327: p. 157-173.
18.Greenwood, J.A. and J.B.P. Willaimson, Contact of Nominally Flat Surface, Proc. Roy. Soc. London, 1966. A295: p. 300-319.
19.Francis, H.A., ”A Finite Surface Element Model for Plane-Strain Elastic Contact”, Wear, 1982. 76: p. 221-245.
20.Majumdar, A. and B. Bhushan, ”Fractal Model of Elastic-Plastic Contact between Rough Surfaces, Journal of Tribology”, 1991. 113: p. 1-11.
21.K.H. Park , H.J. Kim, O.M. Chang, H.D. Jeong, ”Effects of Pad Properties on Material Removal in Chemical Mechanical Polishing”, Journal of Materials Processing Technology ,187–188, 2007,pp. 73–76
22.Jeng, Y.R. and H.R. Tsai, ”Tribological Analysis on Powder Slurry in Chemical Mechanical Polishing”, J. Phys. D: Appl. Phys., 2002. 35: p. 1585-1591.
23.Jeng, Y.R. and H.R. Tsai, ”Tribological Analysis in Chemical Mechanical Polishing: Partial Hydrodynamic Characteristics on Power Slurry”, Journal of Electrochemical Society, 2002.
24.Tsai, H.R. and Y.R. Jeng, ”An Average Lubrication Equation for Thin Film Grain Flow with Surface Roughness Effects”,ASME Journal of Tribology, 2002. 124: p. 736-742.
25.Jeng, Y.R. and P.Y. Huang, ”Tribological Analysis of Chemical Mechanical Polishing with Partial Asperity Contact”, Journal of Electrochemical. Soc., 2003. 150(10): p. 630-637.
26.Jeng, Y.R. and P.Y. Huang, ”Impact of Abrasive Particles on the Material Removal Rate in the Chemical-Mechanical Polishing Process: A Micro-Contact Perspective, Electrochem. and Solid-State Lett”, 2003. 7(2): p. 40-43.
27.Jeng, Y.R. and P.Y. Huang, ”A Material Removal Rate Model Considering Interfacial Micro-Contact Wear Behavior for Chemical Mechanical Polishing”, Journal of Tribology, 2005. 127(1): p. 190-197.
28.Y.R. Jeng and 林育正, ”On the Planarization Mechanism of Soft Pad Polishing: A Perspective from the Micro-Mechanical Property of Soft Pad”2009.
29.http://www.opetech.com.tw/
30.Y. Zhao., L. Chang, and D.M. Maietta, ”An Asperity Microcontact Model Incorporating the Transition from Elastic Deformation to Fully Plastic Flow”, Journal of Tribology, 2000. 122: p. 86-93.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top