|
Benz, M., Brune, A., Schink, B., 1998. Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria. Archives of Microbiology, 169(2): 159-165. Chaudhry, Q., Blom-Zandstra, M., Gupta, S.K., Joner, E., 2005. Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment (15 pp). Environmental Science and Pollution Research, 12(1): 34-48. Cronk, J.K., 1996. Constructed wetlands to treat wastewater from dairy and swine operations: a review. Agriculture, ecosystems & environment, 58(2): 97-114. Davidsson, T.E., Stahl, M., 2000. The influence of organic carbon on nitrogen transformations in five wetland soils. Soil Science Society of America Journal, 64(3): 1129-1136. Engler, R., Patrick Jr, W., 1975. Stability of sulfides of manganese, iron, zinc, copper, and mercury in flooded and nonflooded soil. Soil Science, 119(3): 217-221. Fleming-Singer, M.S., Horne, A.J., 2006. Balancing wildlife needs and nitrate removal in constructed wetlands: The case of the Irvine Ranch Water District's San Joaquin Wildlife Sanctuary. Ecological Engineering, 26(2): 147-166. Gambrell, R., 1994. Trace and toxic metals in wetlands—a review. Journal of Environmental Quality, 23(5): 883-891. Gambrell, R.P., Khalid, R.A., Patrick, W.H., 1980. Chemical availability of mercury, lead, and zinc in Mobile Bay sediment suspensions as affected by pH and oxidation-reduction conditions. Environmental science & technology, 14(4): 431-436. Garcia, C., Moreno, D., Ballester, A., Blazquez, M., Gonzalez, F., 2001. Bioremediation of an industrial acid mine water by metal-tolerant sulphate-reducing bacteria. Minerals Engineering, 14(9): 997-1008. Gardiner, J., 1974. The chemistry of cadmium in natural water—I a study of cadmium complex formation using the cadmium specific-ion electrode. Water Research, 8(1): 23-30. Geurts, J.J. et al., 2009. Interacting effects of sulphate pollution, sulphide toxicity and eutrophication on vegetation development in fens: a mesocosm experiment. Environ Pollut, 157(7): 2072-81. Gottschall, N., Boutin, C., Crolla, A., Kinsley, C., Champagne, P., 2007. The role of plants in the removal of nutrients at a constructed wetland treating agricultural (dairy) wastewater, Ontario, Canada. Ecological Engineering, 29(2): 154-163. Holmer, M., Jensen, H.S., Christensen, K.K., Wigand, C., Andersen, F.Ø., 1998. Sulfate reduction in lake sediments inhabited by the isoetid macrophytes< i> Littorella uniflora and< i> Isoetes lacustris. Aquatic botany, 60(4): 307-324. Jacob, D.L., Otte, M.L., 2003. Conflicting processes in the wetland plant rhizosphere: metal retention or mobilization? Water, Air and Soil Pollution: Focus, 3(1): 91-104. Kadlec, R.H., Wallace, S., 2008. Treatment wetlands. CRC press. Khalid, R., Patrick Jr, W., Gambrell, R., 1978. Effect of dissolved oxygen on chemical transformations of heavy metals, phosphorus, and nitrogen in an estuarine sediment. Estuarine and Coastal Marine Science, 6(1): 21-35. Kosolapov, D. et al., 2004. Microbial Processes of Heavy Metal Removal from Carbon‐Deficient Effluents in Constructed Wetlands. Engineering in Life Sciences, 4(5): 403-411. Krauskopf, K.B., 1957. Separation of manganese from iron in sedimentary processes. Geochimica et Cosmochimica Acta, 12(1): 61-84. Kropfelova, L., Vymazal, J., Svehla, J., Stichova, J., 2009. Removal of trace elements in three horizontal sub-surface flow constructed wetlands in the Czech Republic. Environ Pollut, 157(4): 1186-94. Lee, B.-H., Scholz, M., 2007. What is the role of< i> Phragmites australis in experimental constructed wetland filters treating urban runoff? Ecological Engineering, 29(1): 87-95. Lee, C.g., Fletcher, T.D., Sun, G., 2009. Nitrogen removal in constructed wetland systems. Engineering in Life Sciences, 9(1): 11-22. Lizama, A.K., Fletcher, T.D., Sun, G., 2011. Removal processes for arsenic in constructed wetlands. Chemosphere, 84(8): 1032-43. Lu, S., Hu, H., Sun, Y., Yang, J., 2009. Effect of carbon source on the denitrification in constructed wetlands. Journal of Environmental Sciences, 21(8): 1036-1043. Marchand, L., Mench, M., Jacob, D.L., Otte, M.L., 2010. Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: A review. Environ Pollut, 158(12): 3447-61. Morel, F., McDuff, R.E., Morgan, J.J., 1973. Interactions and chemostasis in aquatic chemical systems: role of pH, pE, solubility, and complexation. Trace metals and Metal Organic Interactions in Natural Waters, Ann Arbor Science Publications. Ann. Arbor: 157-200. Petticrew, E.L., Kalff, J., 1992. Water flow and clay retention in submerged macrophyte beds. Canadian Journal of Fisheries and Aquatic Sciences, 49(12): 2483-2489. Reddy, K., Kadlec, R., Flaig, E., Gale, P., 1999. Phosphorus retention in streams and wetlands: a review. Critical reviews in environmental science and technology, 29(1): 83-146. Scholz, M., Lee, B.h., 2005. Constructed wetlands: a review. International journal of environmental studies, 62(4): 421-447. Singhakant, C., Koottatep, T., Satayavivad, J., 2009. Enhanced arsenic removals through plant interactions in subsurface-flow constructed wetlands. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 44(2): 163-169. Smolders, A.J., Lucassen, E.C., Bobbink, R., Roelofs, J.G., Lamers, L.P., 2010. How nitrate leaching from agricultural lands provokes phosphate eutrophication in groundwater fed wetlands: the sulphur bridge. Biogeochemistry, 98(1-3): 1-7. Smolders, A.J.P., Lucassen, E.C.H.E.T., Bobbink, R., Roelofs, J.G.M., Lamers, L.P.M., 2009. How nitrate leaching from agricultural lands provokes phosphate eutrophication in groundwater fed wetlands: the sulphur bridge. Biogeochemistry, 98(1-3): 1-7. Somes, N., Breen, P., Wong, T., 1996. Integrated hydrologic and botanical design of stormwater control wetlands, Proceedings of the 5th International Conference on Wetland Systems for Water Pollution Control, Vienna, Austria. Sun, G., Saeed, T., 2009. Kinetic modelling of organic matter removal in 80 horizontal flow reed beds for domestic sewage treatment. Process Biochemistry, 44(7): 717-722. Tanner, C.C., Kadlec, R.H., Gibbs, M.M., Sukias, J.P.S., Nguyen, M.L., 2002. Nitrogen processing gradients in subsurface-flow treatment wetlands - influence of wastewater characteristics. Ecological Engineering, 18(4): 499-520. Tu, Y.T., Chiang, P.C., Yang, J., Chen, S.H., Kao, C.M., 2014. Application of a constructed wetland system for polluted stream remediation. Journal of Hydrology, 510: 70-78. Vymazal, J., 2007. Removal of nutrients in various types of constructed wetlands. Sci Total Environ, 380(1-3): 48-65. Wiessner, A., Kuschk, P., Kastner, M., Stottmeister, U., 2002. Abilities of helophyte species to release oxygen into rhizospheres with varying redox conditions in laboratory-scale hydroponic systems. International Journal of Phytoremediation, 4(1): 1-15. Wood, T.S., Shelley, M.L., 1999. A dynamic model of bioavailability of metals in constructed wetland sediments. Ecological Engineering, 12(3): 231-252. 嘉義縣環保局(2012):河川水質改善效益評估期末報告,3-25頁 嘉義縣環保局(2013): 河川水質改善管控暨水質保護教育宣導計畫期中報告,3-20頁
|