(3.238.174.50) 您好!臺灣時間:2021/04/17 05:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林孝先
研究生(外文):Hsiao-Hsien Lin
論文名稱:通用型環境監控物聯網開發平台
論文名稱(外文):A Generic IoT Development Platform for Environment Monitoring
指導教授:李皇辰
指導教授(外文):Huang-Chen Lee
口試委員:易志偉朱宗賢侯廷昭鄭伯炤
口試委員(外文):Yi, Chih-WeiEdward T.-H. ChuHou, Ting-ChaoCheng, Bo-Chao
口試日期:2014-07-11
學位類別:碩士
校院名稱:國立中正大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:66
中文關鍵詞:物聯網環境監控平台感測通用
外文關鍵詞:IoTEnvironment MonitoringPlatformSensingGeneric
相關次數:
  • 被引用被引用:0
  • 點閱點閱:398
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
環境監控的物聯網(Internet of Things,以下簡稱IoT)開發,至今已十餘年之久。現在,各式的技術與設備已逐漸成熟。環境監控IoT的系統開發專家,已經能駕輕就熟的開發各式環境監控IoT系統;而需要環境監控資料的應用專家,也已經知曉並運用這種新技術,來監測在自然環境中的各種現象。
但由於開發系統過程的冗長,造成應用專家沒辦法輕易的取得環境監控資料。對此,如果系統開發專家能開發出一套,適用大多數環境監控IoT的系統,使系統開發專家直接進入應用開發,讓應用專家能快速的取得環境監控資料,將能解決環境監控IoT一直未能普及的原因。
至此,本文致力於開發出一套,能讓系統開發專家直接進入應用開發的平台。如此,應用專家即能快速的取得環境監控資料的系統。本文藉由歸納現實中運作的環境監控IoT系統,找出環境監控IoT的多個重要特性。開發出一套擁有低成本、低功耗、利用TDMA,與基於節點對節點通訊狀態的路徑選擇方法,通用型環境監控物聯網開發平台(IoT-based Generic Environment Monitoring Development Platform,以下簡稱GEMDP);並利用C#設計一套具有感測資料的儲存與顯示、網路部署的偵測、即時的系統運作狀況,與快捷的網路節點設定的使用者介面。讓應用專家能快速的建立一套資料感測系統,且迅速取得資料用於分析,而不必經過漫長的研發等待。
在經過9天,20個節點規模的實驗下,GEMDP取得94.14%的傳輸成功率,並優於XBee DigiMesh的91.47%;而整體節點穩定性上,以4.99%的標準差勝於XBee DigiMesh的9.85%,成功證明低成本、高穩定性與高效能的三項優勢。
最後,我們實現了一套通用的環境監控IoT平台。讓開發流程能有效的縮短,而GEMDP具有低成本、高穩定性、高效能,且持續工作高達四年不用換電池的特性,將使環境監控IoT被更多的應用專家接受並使用。

As the Internet of Things (IoTs) have developed over the last decade, environmental scientists have widely adapted this new technology to monitor various phenomena in the environment. However, significant efforts are still needed to customize system design for certain special requirements. To remedy the redundancy of efforts to customize similar applications, we explore the possibility of designing a general IoT platform that can be used for various monitoring applications. We survey the existing applications, summarize their common requirements, and conclude with the specification of a general platform for these applications.
In this study, the generic IoT development platform was implemented and tested for environmental scientists to collect interested data, while considering low-cost, low-power, TDMA based routing path selection in mind.
In the evaluation, the proposed system archived 94.14% package delivery success rate in a 20 nodes setting, and standard deviation of success rate is 4.99%. In comparison with an existing off-the-shelf product, we demonstrate the proposed system has the advantages in low-cost, high reliability and performance. Such a platform should aid scientists in building more sophisticated monitoring applications without the hassle of creating a customized system.

摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 1
第二章 相關研究 4
第三章 系統原型分析與設計 6
3.1 環境監控IOT應用的功能統整 6
3.2 GEMDP節點原型 8
第四章 GEMDP網路架構 10
4.1 通訊協定 10
4.2 節點網路狀態 12
4.3 TDMA 13
4.4 網路建構 14
4.5 父節點抉擇 19
4.6 網路自主適應性 21
第五章 GEMDP節點系統架構 24
5.1 無線射頻模組(RF MODULE) 25
5.2 中央處理單元(PROCESS UNIT) 27
5.3 記憶單元(MEMORY UNIT) 28
5.4 輸入輸出單元(I/O UNIT) 28
第六章 節點運作狀態 29
6.1 狀態切換-計時器中斷服務程式(TIMER ISR) 30
6.2 空閒模式(IDLE MODE) 32
6.3 初始化模式(INITIALIZATION MODE) 33
6.4 接收模式(RECEIVE MODE)與處理模式(PROCESS MODE) 34
6.4.1 接收模式(Receive Mode) 35
6.4.2 處理模式(Process Mode) 36
6.5 睡眠模式(SLEEP MODE) 37
6.6 感測模式(SENSING MODE) 38
6.7 傳送模式(TRANSMIT MODE) 39
第七章 低功耗設計 40
7.1 GEMDP各運作狀態的工作電流 40
7.1.1 初始化模式 42
7.1.2 空閒模式 42
7.1.3 處理模式 42
7.1.4 感測模式 43
7.1.5 傳送模式 43
7.1.6 接收模式 43
7.1.7 睡眠模式 44
7.1.8 各模式工作電流與運作時間統整 45
7.2 GEMDP系統運作時間分析 46
第八章 使用者介面 50
第九章 系統性能評估 52
9.1 對照平台 52
9.2 十一個節點的系統實驗 54
9.3 二十個節點實驗 57
第十章 結論 64
參考文獻 65

[1]Hill, J.L.; Culler, D.E., "Mica: a wireless platform for deeply embedded networks," Micro, Nov. 2002.
[2]J. W. Hui and D. Culler, “The dynamic behavior of a data dissemination protocol for network programming at scale,” Embedded networked sensor systems. SenSys 2004. Nov. 2004.
[3]Polastre, J.; Szewczyk, R.; Culler, D., "Telos: enabling ultra-low power wireless research," Information Processing in Sensor Networks, IPSN 2005, Apr. 2005.
[4]Bai, L.S.; Dick, R.P.; Dinda, P.A., "Archetype-based design: Sensor network programming for application experts, not just programming experts," Information Processing in Sensor Networks, IPSN 2009, Apr. 2009.
[5]Gordon, D.; Beigl, M.; Neumann, M.A., "Dinam: A wireless sensor network concept and platform for rapid development," Networked Sensing Systems, INSS 2010, Jun. 2010.
[6]Michael Buettner.; Gary V. Yee.; Eric Anderson.; Richard Han., “X-MAC: A Short Preamble MAC Protocol for Duty-Cycled Wireless Sensor Networks,” Embedded networked sensor systems, SenSys 2006, Sep. 2006.
[7]Sha Liu; Kai-Wei Fan; Sinha, P., "CMAC: An Energy Efficient MAC Layer Protocol Using Convergent Packet Forwarding for Wireless Sensor Networks," Sensor, Mesh and Ad Hoc Communications and Networks, SECON 2007, Jun. 2007.
[8]Injong Rhee; Warrier, A.; Aia, M.; Jeongki Min; Sichitiu, M.L., "Z-MAC: A Hybrid MAC for Wireless Sensor Networks," Networking, Jun. 2008.
[9]Al-Karaki, J.N.; Kamal, A.E., "Routing techniques in wireless sensor networks: a survey," Wireless Communications, Dec. 2004.
[10]Huang-Chen Lee, "Towards a general wireless sensor network platform for outdoor environment monitoring," Sensors, 2012, Oct. 2012.
[11]D.S.J. De Couto, D. Aguayo, B.A. Chambers, R. Morris, “Performance of multihop wireless networks: Shortest path is not enough”, ACM SIGCOMM Conference, SIGCOMM 2003, Jan 2003.
[12]D.S.J. DeCouto, D. Aguayo, J. Bicket, R. Morris,“A high-throughput path metric for multi-hop wireless routing,” Mobile computing and networking, MobiCom 2003, Sep. 2003.
[13]K.-W. Chin, J. Judge, A. Williams, R. Kermode, ”Implementation experience with MANET routing protocols”, ACM SIGCOMM Conference, SIGCOMM 2002, Nov.2002
[14]ZigBee Document 053474r17, ZigBee Pro, ZigBee Specification. ZigBee Alliance.
http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2011/kjb79_ajm232/pmeter/ZigBee%20Specification.pdf
[15]Huang-Chen Lee; Yao-Min Fang; Bing-Jean Lee; Chung-Ta King, "The Tube: A Rapidly Deployable Wireless Sensor Platform for Supervising Pollution of Emergency Work," Instrumentation and Measurement, TIM 2012, Oct. 2012.
[16]Werner-Allen, G.; Lorincz, K.; Ruiz, M.; Marcillo, O.; Johnson, J.; Lees, J.; Welsh, M., "Deploying a wireless sensor network on an active volcano," Internet Computing, Apr. 2006.
[17]Stoianov, I.; Nachman, L.; Madden, S.; Tokmouline, T.; Csail, M., "PIPENET: A Wireless Sensor Network for Pipeline Monitoring," Information Processing in Sensor Networks, IPSN 2007, April 2007.
[18]XBee®/XBee-PRO® DigiMesh™ 2.4 RF Modules Datasheet. Digi International Inc.
https://www.eol.ucar.edu/system/files/XBee2.4.pdf
[19]Wireless Mesh Networking. ZigBee® vs. DigiMesh™. Digi International Inc.
http://www.digi.com/pdf/wp_zigbeevsdigimesh.pdf
[20]nRF24L01Pluss_Preliminary_Product_Specification_v1_0.
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf
[21]Atmel, ATmega328P
http://www.atmel.com/devices/atmega328p.aspx

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔