跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/27 23:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:池俊賢
研究生(外文):Jyun Sian Chih
論文名稱:金屬摻雜二氧化鈦奈米纖維的製備與其光觸媒特性的探討
論文名稱(外文):Synthesis and Photocatalytic Characteristic of Metal Doped Anatase TiO2 Nanofibers
指導教授:吳明忠吳明忠引用關係
指導教授(外文):M. C. Wu
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
論文頁數:92
中文關鍵詞:二氧化鈦奈米纖維光觸媒金屬摻雜鈮金屬鉍金屬光觸媒催化裂解染料光觸媒催化裂解水產氫
外文關鍵詞:titanium dioxidenanofiberphotocatalystsphotodegradation of organic dyephotocatalytic hydrogen generation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
目錄

指導教授推薦書
口試委員會審定書
誌 謝 iii
摘 要 iv
Abstract v
目錄 vi
圖目錄 viii
表目錄 xiii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
第二章 文獻回顧 3
2.1 二氧化鈦介紹 3
2.2 光觸媒改質 7
2.3 不同奈米結構的介紹 20
2.4 光觸媒反應機制 23
2.4.1 光觸媒催化降解有機物反應機制 24
2.4.2 光觸媒催化裂解水產氫反應機制 25
第三章 實驗方法 27
3.1 實驗藥品 27
3.2 實驗儀器與簡介 28
3.2.1紫外光-可見光光譜儀 29
3.2.2 拉曼光譜分析儀 29
3.2.3 X光繞射分析儀 30
3.2.4 穿透式電子顯微鏡 31
3.3金屬摻雜二氧化鈦奈米光觸媒製備 32
3.4 光觸媒活性量測 33
3.4.1 反應物 33
3.4.2 光觸媒反應系統 35
3.4.3光觸媒裂解染料實驗 35
3.4.3光觸媒裂解水產氫實驗 37
第四章 結果與討論 39
4.1鈮摻雜二氧化鈦奈米光觸媒之研究 39
4.1.1 拉曼光譜分析 41
4.1.2 X光繞射儀分析 42
4.1.3 高解析度穿透式電子顯微鏡(HR-TEM)分析 43
4.1.4 紫外光/可見光吸收光譜分析 46
4.1.5 光催化裂解染料測試 47
4.1.6 光催化裂解水產氫測試 54
4.2鉍摻雜二氧化鈦奈米光觸媒之研究 56
4.2.1 拉曼光譜分析 57
4.2.2 X光繞射儀分析 58
4.2.3 高解析度穿透式電子顯微鏡(HR-TEM)分析 59
4.2.4 紫外光/可見光吸收光譜分析 61
4.2.5 光催化裂解染料測試 62
4.2.6 光催化裂解水產氫測試 68
4.3兩種不同金屬摻雜之比較 70
第五章 結論 73
參考文獻 74

圖目錄
Figure 2- 1 Three-dimensional representation of the arrangement of TiO6 5
Figure 2- 2 Honda–Fujishima effect-water splitting using a TiO2 photoelectrode. 6
Figure 2- 3 Relationship between band structure of semiconductor and redox potentials of water splitting. 8
Figure 2- 4 Diffuse reflectance UV– vis spectra of as-synthesized samples 10
Figure 2- 5 UV/VIS spectra of iron doped TiO2 samples 11
Figure 2- 6 Photodecomposition curves of phenol under visible light 12
Figure 2- 7 Percent decolorization of Congo Red 13
Figure 2- 8 Reusability of photocatalyst for photodegradation of methyl orange. 15
Figure 2- 9 (a) Diffuse reflectance spectra and the absorption spectra converted from DRS by KubelkaeMunk function with different Nb contents. (b) Determination of indirect interband transition energies with different Nb contents. 16
Figure 2- 10 Photocatalytic degradation curve of MB over as-prepared samples with different Nb contents under (a) solar and (b) visible light irradiation. 16
Figure 2- 11 Percentage degradation of RhB dye under direct sunlight irradiation using synthesized catalysts phased asterisk blank, filled star TNP, filled triangle Bi-TNP, filled circle P-25, filled diamond TNT and filled square Bi-TNT. 18
Figure 2- 12 (a) The UV-vis absorbance spectra of the visible light induced degradation of the ARS dye aqueous solution. The inset shows the molecular structure of the ARS dye; (b) the effect of the Bi-doping on the % degradation rate of the ARS dye. 19
Figure 2- 13 SEM and TEM characterizations of the nanowire wall. (a) An SEM photograph from the cross-section of a FSM showing the multi-decker texture, and a TEM picture (inset) demonstrating the average diameter of single nanowire about 50-60 nm. (b) A low-resolution FESEM photograph displaying many intertwined nanowires typically longer than 0.1 mm, and an inset showing the high-resolution FESEM photograph depicting the macropores of scaffolding nanowires. 22



Figure 2- 14 Robust 2D paper and 3D devices of nanowire. (a) An as-formed FSM and a folded FSM paper (inset). (b) A FSM tube sitting in an FSM bowl that is next to an empty FSM cup. 22
Figure 2- 15 two types of photocatalytic reaction 23
Figure 2- 16 Schematic illustration of the photocatalytic degradation mechanism of RhB dye over Bi-TiO2 photocatalyst 24
Figure 2- 17 Photosynthesis by green plants and photocatalytic water splitting as an artificial photosynthesis. 25
Figure 2- 18 Main processes in photocatalytic water splitting. 26

Figure 3- 1 Preparation Scheme of photocatalysts 33
Figure 3- 2 Chemical structure of Methyl Orange 34
Figure 3- 3 photocatalytic reaction system 35
Figure 3- 4 Flow chart of photodegradation tests 36
Figure 3- 5 The whole system of hydrogen production reaction 37
Figure 3- 6 Flow chart of photocatalytic hydrogen generation tests 38

Figure 4- 1 Nb-doped TiO2 samples : from left to right corresponding to pristine TiO2 ,0.10, 0.25, 0.50, 1.00, 5.00, 10.00 mol % Nb-doped TiO2 . 41
Figure 4- 2 Raman spectra of the various thermally treated Nb-doped TiO2 catalysts with different doping concentration. 42
Figure 4- 3 XRD patterns of the various thermally treated Nb-doped TiO2 catalysts with various doping concentration. 43
Figure 4- 4 Transmission electron micrographs of (a) pristine TiO2 NFs, (b) 0.10mol%, (c) 0.25mol%, (d) 0.50mol%, (e) 1.00mol%, (f) 5.00mol%, (g) 10.00mol% Nb-doped TiO2 catalysts. (h) The high-resolution transmission electron micrographs of 0.10 mol% Nb-doped TiO2 catalysts, and its high-magnification images of the lattice (i) with the corresponding fast Fourier transformed pattern of this specimen (j). 45
Figure 4- 5 UV-vis absorption spectra of pristine TiO2 NFs and various thermally treated Nb-doped TiO2 catalysts with different bismuth doping concentration. 46
Figure 4- 6 The calibration curve of methyl orange 47
Figure 4- 7 (a) The activities of pristine TiO2 NFs and synthesized Nb-doped TiO2 catalysts with different doping concentrations over the photodegradation of methyl orange under UV-A irradiation. (b) Linearized kinetic plots for the degradation of methyl orange using pristine TiO2 NFs and various synthesized Nb-doped TiO2 catalysts with different doping concentrations under UV-A irradiation. (c) Linearized kinetic plots for the degradation of methyl orange using 0.10mol% Nb-doped TiO2 catalysts calcined at different temperature under UV-A irradiation. (d) Linearized kinetic plots for the degradation of methyl orange using 0.10 mol% Nb-doped TiO2 catalysts calcined at 600oC and kept for different time under UV-A irradiation. 49
Figure 4- 8 (a) The activities of Degussa P25 and Nb-doped TiO2 catalysts with different doping concentrations under UV-B irradiation. (b) Linearized kinetic plots for the degradation of methyl orange using Degussa P25 and Nb-doped TiO2 catalysts with different doping concentrations under UV-B irradiation. 51
Figure 4- 9 (a) The activities of Degussa P25 and Nb-doped TiO2 catalysts with different doping concentrations under UV-A irradiation. (b) Linearized kinetic plots for the degradation of methyl orange using Degussa P25 and Nb-doped TiO2 catalysts with different doping concentrations under UV-A irradiation. 51
Figure 4- 10 (a) The activities of Degussa P25 and Nb-doped TiO2 catalysts with different doping concentrations under visible light irradiation. (b) Linearized kinetic plots for the degradation of methyl orange using Degussa P25 and Nb-doped TiO2 catalysts with different doping concentrations under visible light irradiation. 52
Figure 4- 11 The bar chart of photodegradation reaction rate constant of Degussa P25 and various Nb-doped TiO2 photocatalysts under different light sources irradiation, including (a) UV-B, (b) UV-A and (c) visible light. 53
Figure 4- 12 The bar chart of hydrogen production rate of various Nb-doped TiO2 photocatalysts under different light source irradiation, including (a) UV-B and (b) UV-A and (c) visible light. 55
Figure 4- 13 Bi-doped TiO2 samples : from left to right corresponding to pristine TiO2 ,0.25, 0.50, 1.00, 5.00, 10.00 and 20.00 mol % Bi-doped TiO2 . 56
Figure 4- 14 Raman spectra of the various thermally treated Bi-doped TiO2 catalysts with different doping concentration. 58
Figure 4- 15 XRD patterns of the various thermally treated Bi-doped TiO2 catalysts with various doping concentration. 59
Figure 4- 16 Transmission electron micrographs of (a) pristine TiO2 NFs, (b) 0.25mol%, (c) 0.50mol%, (d) 1.00mol%, (e) 5.00mol%, (f) 10.00mol%, (g) 20.00mol% Bi-doped TiO2 catalysts. (h) The high-resolution transmission electron micrographs of 5.00 mol% Bi-doped TiO2 catalysts, and its high-magnification images of the lattice (i) with the corresponding fast Fourier transformed pattern of this specimen (j). 60
Figure 4- 17 UV-vis absorption spectra of pristine TiO2 NFs and various thermally treated Bi-doped TiO2 catalysts with different bismuth doping concentration. 61
Figure 4- 18 (a) The activities of pristine TiO2 NFs and synthesized Bi-doped TiO2 catalysts with different doping concentrations over the photodegradation of methyl orange under UV-A irradiation. (b) Linearized kinetic plots for the degradation of methyl orange using pristine TiO2 NFs and various synthesized Bi-doped TiO2 catalysts with different doping concentrations under UV-A irradiation. (c) Linearized kinetic plots for the degradation of methyl orange using 0.50mol% Bi-doped TiO2 catalysts calcined at different temperature under UV-A irradiation. (d) Linearized kinetic plots for the degradation of methyl orange using 0.50 mol% Bi-doped TiO2 catalysts calcined at 600oC and kept for different time under UV-A irradiation. 63
Figure 4- 19 (a) The activities of Degussa P25 and Bi-doped TiO2 catalysts with different doping concentrations under UV-B irradiation. (b) Linearized kinetic plots for the degradation of methyl orange using Degussa P25 and Bi-doped TiO2 catalysts with different doping concentrations under UV-B irradiation. 65
Figure 4- 20 (a) The activities of Degussa P25 and Bi-doped TiO2 catalysts with different doping concentrations under UV-A irradiation. (b) Linearized kinetic plots for the degradation of methyl orange using Degussa P25 and Bi-doped TiO2 catalysts with different doping concentrations under UV-A irradiation. 65


Figure 4- 21 (a) The activities of Degussa P25 and Bi-doped TiO2 catalysts with different doping concentrations under visible light irradiation. (b) Linearized kinetic plots for the degradation of methyl orange using Degussa P25 and Bi-doped TiO2 catalysts with different doping concentrations under visible light irradiation. 66
Figure 4- 22 The bar chart of photodegradation reaction rate constant of Degussa P25 and various Bi-doped TiO2 photocatalysts under different light sources irradiation, including (a) UV-B, (b) UV-A and (c) visible light. 67
Figure 4- 23 The bar chart of hydrogen production rate of various Bi-doped TiO2 photocatalysts under different light source irradiation, including (a) UV-B and (b) UV-A and (c) visible light. 69
Figure 4- 24 The bar chart of photodegradation reaction rate constant comparison between Degussa P25 , pristine TiO2, Nb-TiO2 and Bi-TiO2 under (a) UV-B, (b) UV-A and (c) visible light. 71
Figure 4- 25 The bar chart of hydrogen production rate comparison between pristine TiO2, Nb-TiO2 and Bi-TiO2 under (a) UV-B, (b) UV-A and (c) visible light. 72


表目錄
Table 2- 1 Basic properties of anatase and rutile structures of TiO2 4

Table 3- 1 List of chemicals used in this work. 27
Table 3- 2 List of instruments used in this work. 28

Table 4- 1 List of symbols. 40
Table 4- 2 List of symbols. 56


參考文獻
Avansi Jr.,W.; Arenal, R.; Mendonça, V. R.; Ribeiro, C.; Longo, E. Vanadium-doped TiO2 anatase nanostructures: the role of V in solid solution formation and its effect on the optical properties. Cryst Eng Comm, 2014, 16, 5021.
BEHNAJADY, M.A.; MODIRSHAHLA, N.; SHOKRI, M.; RAD B. Enhancement Of Photocatalytic Activity Of Tio2 Nanoparticles By Silver Doping: Photodeposition Versus Liquid Impregnation Methods. Global NEST Journal, 2008, 10 ( 1), 1-7.
Cho, I. S.; Chen, Z.; Forman, A. J.; Kim, D. R.; Rao, P. M.; Jaramillo, T. F.; Zheng, X. Branched TiO2 Nanorods for Photoelectrochemical Hydrogen Production. Nano Lett., 2011, 11, 4978.
Choi, S. K.; Kim, S.; Lim, S. K.; Park, H. Photocatalytic Comparison of TiO2 Nanoparticles and Electrospun TiO2 Nanofibers: Effects of Mesoporosity and Interparticle Charge Transfer. J. Phys. Chem. C, 2010, 114, 16475-16480.
Col´on, G.; Maicu, M.; Hidalgo, M.C.; Nav´ıo, J.A. Cu-doped TiO2 systems with improved photocatalytic activity. Applied Catalysis B: Environmental, 2006, 67, 41–51.
Diebold, U. Structure and properties of TiO2 surfaces : a brief review. Appl. Phys. A., 2003, 76, 681–687 .
Fujushima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238, 37.
Fujihira, M.; Satoh, Y.; Osa, T. Heterogeneous Photocatalytic Oxidation of Aromatic-Compounds on TiO2. Nature 1981, 293, 206–208.
Gunawan, C.; Teoh, W. Y.; Marquis, C. P.; Lifia, J.; Amal, R. Reversible Antimicrobial Photoswitching in Nanosilver. Small 2009, 5, 341–344.
Garadkar, K.M.; Suwarnkar, M.B.; Dhabbe, R.S.; Kadam, A.N. Enhanced photocatalytic activity of Ag doped TiO2 nanoparticles synthesized by a microwave assisted method. Ceramics International, 2014, 40, 5489–5496
Hanaor, D.A. H.; Sorrell, C. C. Review of the anatase to rutile phase transformation. J. Mater. Sci., 2011, 46, 855–874.
Konstantinou, I. K.; Albanis, T. A. TiO2-Assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution: Kinetic and Mechanistic Investigations;A Review. Appl. Catal. B, 2004, 49, 1–14.
Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev., 2009, 38, 253.
Lazzeri, M.; Vittadini, A.; Selloni A. Structure and energetics of stoichiometric TiO2 anatase surfaces. PHYSICAL REVIEW B, 2001, 63, 155409.
Li, Q.; Li, Y. W.; Wu, P. G.; Xie, R. C.; Shang, J. K. Palladium Oxide Nanoparticles on Nitrogen-Doped Titanium Oxide: Accelerated Photocatalytic Disinfection and Post-Illumination Catalytic “Memory”. Adv. Mater., 2008, 20, 3717–3723.
Lu , G.; Wu,Y.; Li, S. The Doping Effect of Bi on TiO2 for Photocatalytic Hydrogen Generation and Photodecolorization of Rhodamine B. J. Phys. Chem. C, 2009, 113, 9950–9955.



Mogyoro´si, K.; Ambrus, Z.; Bala´zs, N.; Alapi, T.; Wittmann, G.; Sipos, P.; Dombi, A. Synthesis, structure and photocatalytic properties of Fe(III)-doped TiO2 prepared from TiCl3. Applied Catalysis B: Environmental, 2008, 81, 27-37
Montes-Navajas, P.; Serra, M.; Garcia, H. Influence of the irradiation wavelength on the photocatalytic activity of Au–Pt nanoalloys supported on TiO2 for hydrogen generation from water. Catal. Sci. Technol., 2013, 3, 2252.
Morikawa,T.; Irokawa, Y.; Ohwaki, T. Enhanced photocatalytic activity of TiO2-xNx loaded with copper ions under visible light irradiation. Applied Catalysis A: General, 2006, 314, 123–127.
Nainani R.; Thakur P.; Chaskar M. Synthesis of Silver Doped TiO2 Nanoparticles for the Improved Photocatalytic Degradation of Methyl Orange. Journal of Materials Science and Engineering B, 2012, 2 (1), 52-58.
Nakata, K.; Fujishima, A. TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13, 169- 189.
Nasralla, N.; Yeganeh, M.; Astuti ,Y.; Piticharoenphun, S.; Shahtahmasebi, N.; Kompany, A.; Karimipour, M.; Mendis, B.G.; Poolton, N.R.J.; Šiller, L. Structural and spectroscopic study of Fe-doped TiO2 nanoparticles prepared by sol–gel method. Scientia Iranica F, 2013, 20 (3), 1018-1022.



Natarajan, T.S.; Natarajan, K.; Bajaj H. C.; Tayade, R. J. Enhanced photocatalytic activity of bismuth-doped TiO2 nanotubes under direct sunlight irradiation for degradation of Rhodamine B dye. J Nanopart Res, 2013, 15, 1669.
Ochiai, T.; Hoshi,T.; Slimen, H.; Nakata, K.; Murakami, T.; Tatejima, H.; Koide, Y.; Houas, A.; Horie, T.; Moritobe, Y.; Fujishima, A. Fabrication of a TiO2 nanoparticles impregnated titanium mesh filter and its application for environmental purification. Catal. Sci. Technol., 2011, 1, 1324.
Raftery, D.; Klosek, S. Visible Light Driven V-Doped TiO2 Photocatalyst and Its Photooxidation of Ethanol. J. Phys. Chem. B , 2001, 105, 2815-2819.
Sheng, H.; Li, Q.; Ma, W.; Ji, H.; Chen, C.; Zhao, J. Photocatalytic degradation of organic pollutants on surface anionized TiO2: Common effect of anions for high hole-availability by water. Appl. Catal. B - Environ., 2013, 138-139, 212.
Shieu, F.S.; Yao, H. C.; Chiu, M.C. Tsai, D.C.; Huang, C.J. Effect of Annealing on the Nb-Doped TiO2 Films Prepared by DC/RF Cosputtering. Journal of The Electrochemical Society, 2008,155 (9), G173-G179 .
Tian , Z. R.; Dong, W.; Cogbill, A.; Zhang, T.; Ghosh, S. Multifunctional, Catalytic Nanowire Membranes and the Membrane-Based 3D Devices. J. Phys. Chem. B, 2006, 34, 110.
Tseng, H. H.; Wei, M. C.; Hsiung, S. F.; Chiou, C. W. Degradation of Xylene Vapor over Ni-Doped TiO2 Photocatalysts Prepared by Polyol-Mediated Synthesis. Chem. Eng. J. 2009, 150, 160–167.
Umar, A.; Sood, S.; Mehta, S. K.; Kansal, S. K. The visible light-driven photocatalytic degradation of Alizarin red S using Bi-doped TiO2 nanoparticles. NewJ.Chem., 2014, 38, 3127.
Yi, J.; Yu, S.; Yun, H. J.; Lee, D. M. Preparation and characterization of Fe-doped TiO2 nanoparticles as a support for a high performance CO oxidation catalyst. J. Mater. Chem., 2012, 22, 12629.
Zhang, X.; Yang, J.; Wang, C.; Sun, P.; Wang, L.; Xia, B.; Liu Y. Solar photocatalytic activities of porous Nb-doped TiO2 microspheres prepared by ultrasonic spray pyrolysis. Solid State Sciences, 2012, 14, 139-144.
Zuas, O.; Budiman, H. Synthesis of Nanostructured Copper-doped Titania and Its Properties. Nano-Micro Lett, 2013, 5(1), 26-33.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊