|
1. Oertle, T., Klinger, M., Stuermer, C. A., and Schwab, M. E. (2003) A reticular rhapsody: phylogenic evolution and nomenclature of the RTN/Nogo gene family. FASEB J 17, 1238-1247 2. Chiurchiu, V., Maccarrone, M., and Orlacchio, A. (2014) The role of reticulons in neurodegenerative diseases. Neuromolecular Med 16, 3-15 3. He, W., Shi, Q., Hu, X., and Yan, R. (2007) The membrane topology of RTN3 and its effect on binding of RTN3 to BACE1. J Biol Chem 282, 29144-29151 4. Oertle, T., van der Haar, M. E., Bandtlow, C. E., Robeva, A., Burfeind, P., Buss, A., Huber, A. B., Simonen, M., Schnell, L., Brosamle, C., Kaupmann, K., Vallon, R., and Schwab, M. E. (2003) Nogo-A inhibits neurite outgrowth and cell spreading with three discrete regions. J Neurosci 23, 5393-5406 5. Brandizzi, F., Frangne, N., Marc-Martin, S., Hawes, C., Neuhaus, J. M., and Paris, N. (2002) The destination for single-pass membrane proteins is influenced markedly by the length of the hydrophobic domain. Plant Cell 14, 1077-1092 6. Tolley, N., Sparkes, I., Craddock, C. P., Eastmond, P. J., Runions, J., Hawes, C., and Frigerio, L. (2010) Transmembrane domain length is responsible for the ability of a plant reticulon to shape endoplasmic reticulum tubules in vivo. Plant J 64, 411-418 7. Oertle, T., and Schwab, M. E. (2003) Nogo and its paRTNers. Trends in cell biology 13, 187-194 8. Wakana, Y., Koyama, S., Nakajima, K., Hatsuzawa, K., Nagahama, M., Tani, K., Hauri, H. P., Melancon, P., and Tagaya, M. (2005) Reticulon 3 is involved in membrane trafficking between the endoplasmic reticulum and Golgi. Biochem Biophys Res Commun 334, 1198-1205 9. Fergani, A., Dupuis, L., Jokic, N., Larmet, Y., de Tapia, M., Rene, F., Loeffler, J. P., and Gonzalez de Aguilar, J. L. (2005) Reticulons as markers of neurological diseases: focus on amyotrophic lateral sclerosis. Neurodegener Dis 2, 185-194 10. Yan, R., Shi, Q., Hu, X., and Zhou, X. (2006) Reticulon proteins: emerging players in neurodegenerative diseases. Cell Mol Life Sci 63, 877-889 11. Zhong, Y., Wang, Q. J., Li, X., Yan, Y., Backer, J. M., Chait, B. T., Heintz, N., and Yue, Z. (2009) Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nature cell biology 11, 468-476 12. Murayama, K. S., Kametani, F., Saito, S., Kume, H., Akiyama, H., and Araki, W. (2006) Reticulons RTN3 and RTN4-B/C interact with BACE1 and inhibit its ability to produce amyloid beta-protein. Eur J Neurosci 24, 1237-1244 13. Yang, Y. S., and Strittmatter, S. M. (2007) The reticulons: a family of proteins with diverse functions. Genome Biol 8, 234 14. Tagami, S., Eguchi, Y., Kinoshita, M., Takeda, M., and Tsujimoto, Y. (2000) A novel protein, RTN-XS, interacts with both Bcl-XL and Bcl-2 on endoplasmic reticulum and reduces their anti-apoptotic activity. Oncogene 19, 5736-5746 15. Gao, L., Utsumi, T., Tashiro, K., Liu, B., Zhang, D., Swenson, E. S., and Iwakiri, Y. (2013) Reticulon 4B (Nogo-B) facilitates hepatocyte proliferation and liver regeneration in mice. Hepatology 57, 1992-2003 16. Wang, H., Shen, J., Xiong, N., Zhao, H., and Chen, Y. (2011) Protein kinase B is involved in Nogo-66 inhibiting neurite outgrowth in PC12 cells. Neuroreport 22, 733-738 17. Kumamaru, E., Kuo, C. H., Fujimoto, T., Kohama, K., Zeng, L. H., Taira, E., Tanaka, H., Toyoda, T., and Miki, N. (2004) Reticulon3 expression in rat optic and olfactory systems. Neurosci Lett 356, 17-20 18. Shi, Q., Prior, M., He, W., Tang, X., Hu, X., and Yan, R. (2009) Reduced amyloid deposition in mice overexpressing RTN3 is adversely affected by preformed dystrophic neurites. J Neurosci 29, 9163-9173 19. Xiang, R., and Zhao, S. (2009) RTN3 inducing apoptosis is modulated by an adhesion protein CRELD1. Mol Cell Biochem 331, 225-230 20. Lee, J. T., Lee, T. J., Kim, C. H., Kim, N. S., and Kwon, T. K. (2009) Over-expression of Reticulon 3 (RTN3) enhances TRAIL-mediated apoptosis via up-regulation of death receptor 5 (DR5) and down-regulation of c-FLIP. Cancer Lett 279, 185-192 21. Chen, Y., Zhao, S., and Xiang, R. (2010) RTN3 and RTN4: Candidate modulators in vascular cell apoptosis and atherosclerosis. J Cell Biochem 111, 797-800 22. Tang, W. F., Yang, S. Y., Wu, B. W., Jheng, J. R., Chen, Y. L., Shih, C. H., Lin, K. H., Lai, H. C., Tang, P., and Horng, J. T. (2007) Reticulon 3 binds the 2C protein of enterovirus 71 and is required for viral replication. J Biol Chem 282, 5888-5898 23. Wu, M. J., Ke, P. Y., Hsu, J. T., Yeh, C. T., and Horng, J. T. (2014) Reticulon 3 interacts with NS4B of the hepatitis C virus and negatively regulates viral replication by disrupting NS4B self-interaction. Cell Microbiol 24. Chen, R., Jin, R., Wu, L., Ye, X., Yang, Y., Luo, K., Wang, W., Wu, D., Huang, L., Huang, T., and Xiao, G. (2011) Reticulon 3 attenuates the clearance of cytosolic prion aggregates via inhibiting autophagy. Autophagy 7, 205-216 25. Yang, Q., and Guan, K. L. (2007) Expanding mTOR signaling. Cell Res 17, 666-681 26. Moses, J. W., Leon, M. B., Popma, J. J., Fitzgerald, P. J., Holmes, D. R., O'Shaughnessy, C., Caputo, R. P., Kereiakes, D. J., Williams, D. O., Teirstein, P. S., Jaeger, J. L., and Kuntz, R. E. (2003) Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med 349, 1315-1323 27. Morice, M. C., Serruys, P. W., Sousa, J. E., Fajadet, J., Ban Hayashi, E., Perin, M., Colombo, A., Schuler, G., Barragan, P., Guagliumi, G., Molnar, F., and Falotico, R. (2002) A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med 346, 1773-1780 28. Marks, A. R. (2003) Sirolimus for the prevention of in-stent restenosis in a coronary artery. N Engl J Med 349, 1307-1309 29. Kunz, J., Henriquez, R., Schneider, U., Deuter-Reinhard, M., Movva, N. R., and Hall, M. N. (1993) Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 73, 585-596 30. Heitman, J., Movva, N. R., and Hall, M. N. (1991) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253, 905-909 31. Sabers, C. J., Martin, M. M., Brunn, G. J., Williams, J. M., Dumont, F. J., Wiederrecht, G., and Abraham, R. T. (1995) Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 270, 815-822 32. Brown, E. J., Albers, M. W., Shin, T. B., Ichikawa, K., Keith, C. T., Lane, W. S., and Schreiber, S. L. (1994) A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369, 756-758 33. Wullschleger, S., Loewith, R., and Hall, M. N. (2006) TOR signaling in growth and metabolism. Cell 124, 471-484 34. Fingar, D. C., and Blenis, J. (2004) Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23, 3151-3171 35. Murakami, M., Ichisaka, T., Maeda, M., Oshiro, N., Hara, K., Edenhofer, F., Kiyama, H., Yonezawa, K., and Yamanaka, S. (2004) mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol 24, 6710-6718 36. Martin, P. M., and Sutherland, A. E. (2001) Exogenous amino acids regulate trophectoderm differentiation in the mouse blastocyst through an mTOR-dependent pathway. Dev Biol 240, 182-193 37. Gangloff, Y. G., Mueller, M., Dann, S. G., Svoboda, P., Sticker, M., Spetz, J. F., Um, S. H., Brown, E. J., Cereghini, S., Thomas, G., and Kozma, S. C. (2004) Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol Cell Biol 24, 9508-9516 38. Huang, S., and Houghton, P. J. (2003) Targeting mTOR signaling for cancer therapy. Curr Opin Pharmacol 3, 371-377 39. Peterson, R. T., Beal, P. A., Comb, M. J., and Schreiber, S. L. (2000) FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J Biol Chem 275, 7416-7423 40. Edinger, A. L., Linardic, C. M., Chiang, G. G., Thompson, C. B., and Abraham, R. T. (2003) Differential effects of rapamycin on mammalian target of rapamycin signaling functions in mammalian cells. Cancer Res 63, 8451-8460 41. Holz, M. K., Ballif, B. A., Gygi, S. P., and Blenis, J. (2005) mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123, 569-580 42. Thomas, G. (2002) The S6 kinase signaling pathway in the control of development and growth. Biol Res 35, 305-313 43. Dubaquie, Y., Looser, R., Funfschilling, U., Jeno, P., and Rospert, S. (1998) Identification of in vivo substrates of the yeast mitochondrial chaperonins reveals overlapping but non-identical requirement for hsp60 and hsp10. EMBO J 17, 5868-5876 44. Gingras, A. C., Raught, B., and Sonenberg, N. (2001) Regulation of translation initiation by FRAP/mTOR. Genes Dev 15, 807-826 45. Fingar, D. C., Salama, S., Tsou, C., Harlow, E., and Blenis, J. (2002) Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 16, 1472-1487 46. Fingar, D. C., Richardson, C. J., Tee, A. R., Cheatham, L., Tsou, C., and Blenis, J. (2004) mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol 24, 200-216 47. Kim, D. H., Sarbassov, D. D., Ali, S. M., King, J. E., Latek, R. R., Erdjument-Bromage, H., Tempst, P., and Sabatini, D. M. (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163-175 48. Hara, K., Maruki, Y., Long, X., Yoshino, K., Oshiro, N., Hidayat, S., Tokunaga, C., Avruch, J., and Yonezawa, K. (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177-189 49. Kim, D. H., Sarbassov, D. D., Ali, S. M., Latek, R. R., Guntur, K. V., Erdjument-Bromage, H., Tempst, P., and Sabatini, D. M. (2003) GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 11, 895-904 50. Gwinn, D. M., Shackelford, D. B., Egan, D. F., Mihaylova, M. M., Mery, A., Vasquez, D. S., Turk, B. E., and Shaw, R. J. (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30, 214-226 51. Dennis, P. B., Jaeschke, A., Saitoh, M., Fowler, B., Kozma, S. C., and Thomas, G. (2001) Mammalian TOR: a homeostatic ATP sensor. Science 294, 1102-1105 52. Inoki, K., Zhu, T., and Guan, K. L. (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577-590 53. Inoki, K., Corradetti, M. N., and Guan, K. L. (2005) Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet 37, 19-24 54. Mizushima, N. (2010) The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 22, 132-139 55. Chan, E. Y. Regulation and function of uncoordinated-51 like kinase proteins. Antioxid Redox Signal 17, 775-785 56. Yang, Z., and Klionsky, D. J. (2009) An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335, 1-32 57. Xie, Z., and Klionsky, D. J. (2007) Autophagosome formation: core machinery and adaptations. Nature cell biology 9, 1102-1109 58. Liang, C. (2010) Negative regulation of autophagy. Cell Death Differ 17, 1807-1815 59. Mercer, C. A., Kaliappan, A., and Dennis, P. B. (2009) A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy 5, 649-662 60. Hosokawa, N., Sasaki, T., Iemura, S., Natsume, T., Hara, T., and Mizushima, N. (2009) Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 5, 973-979 61. Birgisdottir, A. B., Lamark, T., and Johansen, T. (2013) The LIR motif - crucial for selective autophagy. J Cell Sci 126, 3237-3247 62. Russell, R. C., Tian, Y., Yuan, H., Park, H. W., Chang, Y. Y., Kim, J., Kim, H., Neufeld, T. P., Dillin, A., and Guan, K. L. (2013) ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nature cell biology 15, 741-750 63. Mizushima, N., Yoshimori, T., and Levine, B. (2010) Methods in mammalian autophagy research. Cell 140, 313-326 64. Jung, C. H., Ro, S. H., Cao, J., Otto, N. M., and Kim, D. H. (2010) mTOR regulation of autophagy. FEBS Lett 584, 1287-1295 65. Neufeld, T. P. (2010) TOR-dependent control of autophagy: biting the hand that feeds. Curr Opin Cell Biol 22, 157-168 66. Vousden, K. H., and Ryan, K. M. (2009) p53 and metabolism. Nat Rev Cancer 9, 691-700 67. Feng, Z., Zhang, H., Levine, A. J., and Jin, S. (2005) The coordinate regulation of the p53 and mTOR pathways in cells. Proceedings of the National Academy of Sciences of the United States of America 102, 8204-8209 68. Maiuri, M. C., Galluzzi, L., Morselli, E., Kepp, O., Malik, S. A., and Kroemer, G. (2010) Autophagy regulation by p53. Curr Opin Cell Biol 22, 181-185 69. Tasdemir, E., Maiuri, M. C., Galluzzi, L., Vitale, I., Djavaheri-Mergny, M., D'Amelio, M., Criollo, A., Morselli, E., Zhu, C., Harper, F., Nannmark, U., Samara, C., Pinton, P., Vicencio, J. M., Carnuccio, R., Moll, U. M., Madeo, F., Paterlini-Brechot, P., Rizzuto, R., Szabadkai, G., Pierron, G., Blomgren, K., Tavernarakis, N., Codogno, P., Cecconi, F., and Kroemer, G. (2008) Regulation of autophagy by cytoplasmic p53. Nature cell biology 10, 676-687 70. Chang, N. C., Nguyen, M., Germain, M., and Shore, G. C. (2010) Antagonism of Beclin 1-dependent autophagy by BCL-2 at the endoplasmic reticulum requires NAF-1. Embo J 29, 606-618 71. Pattingre, S., Tassa, A., Qu, X., Garuti, R., Liang, X. H., Mizushima, N., Packer, M., Schneider, M. D., and Levine, B. (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927-939 72. Vergne, I., Roberts, E., Elmaoued, R. A., Tosch, V., Delgado, M. A., Proikas-Cezanne, T., Laporte, J., and Deretic, V. (2009) Control of autophagy initiation by phosphoinositide 3-phosphatase Jumpy. Embo J 28, 2244-2258 73. Djavaheri-Mergny, M., Maiuri, M. C., and Kroemer, G. (2010) Cross talk between apoptosis and autophagy by caspase-mediated cleavage of Beclin 1. Oncogene 29, 1717-1719 74. Luo, S., and Rubinsztein, D. C. (2010) Apoptosis blocks Beclin 1-dependent autophagosome synthesis: an effect rescued by Bcl-xL. Cell Death Differ 17, 268-277 75. Yousefi, S., Perozzo, R., Schmid, I., Ziemiecki, A., Schaffner, T., Scapozza, L., Brunner, T., and Simon, H. U. (2006) Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nature cell biology 8, 1124-1132 76. Lee, J. S., Li, Q., Lee, J. Y., Lee, S. H., Jeong, J. H., Lee, H. R., Chang, H., Zhou, F. C., Gao, S. J., Liang, C., and Jung, J. U. (2009) FLIP-mediated autophagy regulation in cell death control. Nature cell biology 11, 1355-1362 77. Xia, H. G., Zhang, L., Chen, G., Zhang, T., Liu, J., Jin, M., Ma, X., Ma, D., and Yuan, J. (2010) Control of basal autophagy by calpain1 mediated cleavage of ATG5. Autophagy 6, 61-66 78. Matsunaga, K., Saitoh, T., Tabata, K., Omori, H., Satoh, T., Kurotori, N., Maejima, I., Shirahama-Noda, K., Ichimura, T., Isobe, T., Akira, S., Noda, T., and Yoshimori, T. (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nature cell biology 11, 385-396 79. Long, X., Lin, Y., Ortiz-Vega, S., Yonezawa, K., and Avruch, J. (2005) Rheb binds and regulates the mTOR kinase. Curr Biol 15, 702-713 80. Kim, J., Kundu, M., Viollet, B., and Guan, K. L. (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature cell biology 13, 132-141 81. Hosokawa, N., Hara, T., Kaizuka, T., Kishi, C., Takamura, A., Miura, Y., Iemura, S., Natsume, T., Takehana, K., Yamada, N., Guan, J. L., Oshiro, N., and Mizushima, N. (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20, 1981-1991 82. Kundu, M., Lindsten, T., Yang, C. Y., Wu, J., Zhao, F., Zhang, J., Selak, M. A., Ney, P. A., and Thompson, C. B. (2008) Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112, 1493-1502 83. Cheong, H., Lindsten, T., Wu, J., Lu, C., and Thompson, C. B. (2011) Ammonia-induced autophagy is independent of ULK1/ULK2 kinases. Proceedings of the National Academy of Sciences of the United States of America 108, 11121-11126 84. Whitfield, M. L., Sherlock, G., Saldanha, A. J., Murray, J. I., Ball, C. A., Alexander, K. E., Matese, J. C., Perou, C. M., Hurt, M. M., Brown, P. O., and Botstein, D. (2002) Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13, 1977-2000 85. Bienvenu, F., Jirawatnotai, S., Elias, J. E., Meyer, C. A., Mizeracka, K., Marson, A., Frampton, G. M., Cole, M. F., Odom, D. T., Odajima, J., Geng, Y., Zagozdzon, A., Jecrois, M., Young, R. A., Liu, X. S., Cepko, C. L., Gygi, S. P., and Sicinski, P. (2010) Transcriptional role of cyclin D1 in development revealed by a genetic-proteomic screen. Nature 463, 374-378 86. Jirawatnotai, S., Hu, Y., Michowski, W., Elias, J. E., Becks, L., Bienvenu, F., Zagozdzon, A., Goswami, T., Wang, Y. E., Clark, A. B., Kunkel, T. A., van Harn, T., Xia, B., Correll, M., Quackenbush, J., Livingston, D. M., Gygi, S. P., and Sicinski, P. (2011) A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers. Nature 474, 230-234 87. Kamada, Y., Yoshino, K., Kondo, C., Kawamata, T., Oshiro, N., Yonezawa, K., and Ohsumi, Y. (2010) Tor directly controls the Atg1 kinase complex to regulate autophagy. Mol Cell Biol 30, 1049-1058 88. Ganley, I. G., Lam du, H., Wang, J., Ding, X., Chen, S., and Jiang, X. (2009) ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284, 12297-12305 89. Hara, T., Takamura, A., Kishi, C., Iemura, S., Natsume, T., Guan, J. L., and Mizushima, N. (2008) FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol 181, 497-510 90. Dorsey, F. C., Rose, K. L., Coenen, S., Prater, S. M., Cavett, V., Cleveland, J. L., and Caldwell-Busby, J. (2009) Mapping the phosphorylation sites of Ulk1. J Proteome Res 8, 5253-5263 91. Egan, D. F., Shackelford, D. B., Mihaylova, M. M., Gelino, S., Kohnz, R. A., Mair, W., Vasquez, D. S., Joshi, A., Gwinn, D. M., Taylor, R., Asara, J. M., Fitzpatrick, J., Dillin, A., Viollet, B., Kundu, M., Hansen, M., and Shaw, R. J. (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456-461 92. Montoya, J., Lopez-Gallardo, E., Herrero-Martin, M. D., Martinez-Romero, I., Gomez-Duran, A., Pacheu, D., Carreras, M., Diez-Sanchez, C., Lopez-Perez, M. J., and Ruiz-Pesini, E. (2009) Diseases of the human mitochondrial oxidative phosphorylation system. Adv Exp Med Biol 652, 47-67 93. Lippai, M., Csikos, G., Maroy, P., Lukacsovich, T., Juhasz, G., and Sass, M. (2008) SNF4Agamma, the Drosophila AMPK gamma subunit is required for regulation of developmental and stress-induced autophagy. Autophagy 4, 476-486 94. Meley, D., Bauvy, C., Houben-Weerts, J. H., Dubbelhuis, P. F., Helmond, M. T., Codogno, P., and Meijer, A. J. (2006) AMP-activated protein kinase and the regulation of autophagic proteolysis. J Biol Chem 281, 34870-34879 95. Lee, J. W., Park, S., Takahashi, Y., and Wang, H. G. (2010) The association of AMPK with ULK1 regulates autophagy. PLoS One 5, e15394 96. Dunlop, E. A., Hunt, D. K., Acosta-Jaquez, H. A., Fingar, D. C., and Tee, A. R. (2011) ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding. Autophagy 7, 737-747 97. Whitfield, M. L., George, L. K., Grant, G. D., and Perou, C. M. (2006) Common markers of proliferation. Nat Rev Cancer 6, 99-106 98. Mamay, C. L., Schauer, I. E., Rice, P. L., McDoniels-Silvers, A., Dwyer-Nield, L. D., You, M., Sclafani, R. A., and Malkinson, A. M. (2001) Cyclin D1 as a proliferative marker regulating retinoblastoma phosphorylation in mouse lung epithelial cells. Cancer Lett 168, 165-172 99. Ohta, Y., and Ichimura, K. (2000) Proliferation markers, proliferating cell nuclear antigen, Ki67, 5-bromo-2'-deoxyuridine, and cyclin D1 in mouse olfactory epithelium. Ann Otol Rhinol Laryngol 109, 1046-1048 100. Ke, P. Y., and Chen, S. S. (2011) Activation of the unfolded protein response and autophagy after hepatitis C virus infection suppresses innate antiviral immunity in vitro. J Clin Invest 121, 37-56 101. Teitell, M. A. (2005) The TCL1 family of oncoproteins: co-activators of transformation. Nat Rev Cancer 5, 640-648 102. Dobashi, Y., Watanabe, Y., Miwa, C., Suzuki, S., and Koyama, S. (2011) Mammalian target of rapamycin: a central node of complex signaling cascades. Int J Clin Exp Pathol 4, 476-495 103. Wong, P. M., Puente, C., Ganley, I. G., and Jiang, X. (2013) The ULK1 complex: sensing nutrient signals for autophagy activation. Autophagy 9, 124-137 104. Nath, S., Dancourt, J., Shteyn, V., Puente, G., Fong, W. M., Nag, S., Bewersdorf, J., Yamamoto, A., Antonny, B., and Melia, T. J. (2014) Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3. Nature cell biology 16, 415-424 105. Funderburk, S. F., Wang, Q. J., and Yue, Z. (2010) The Beclin 1-VPS34 complex--at the crossroads of autophagy and beyond. Trends in cell biology 20, 355-362 106. Li, J., Kim, S. G., and Blenis, J. (2014) Rapamycin: one drug, many effects. Cell metabolism 19, 373-379
|