跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/08 07:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳韻竹
研究生(外文):Yun Chu Chen
論文名稱:探討Grb2在參與腸病毒71型複製的角色
論文名稱(外文):The study of GRB2 biological function in EV71 replication
指導教授:洪錦堂洪錦堂引用關係
指導教授(外文):J. T. Horng
學位類別:碩士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
論文頁數:100
中文關鍵詞:腸病毒71型目標基因Grb2miR-197ERK
外文關鍵詞:EV71Target geneGrb2miR-197ERK
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
實驗室發現miR-197 會受到EV71 的感染而降低,並且miR-197 的存在是不利於EV71 的複製。使用穩定表現同位素標定胺基酸(SILAC)的方式去標定細胞後,以miR-197 處理的細胞,用質譜儀分析,再搭配TargetScan 資料庫與3’UTR reporter assay 做進一步的鑑定,最後得到9個miR-197 的直接目標基因。我們選定其中的Grb2 作為研究目標,進一步探討Grb2 對EV71 複製的生理意義,在EV71 感染宿主後,miR-197的表現量會隨著感染時間增加而減少,而導致下游的目標基因Grb2 的表現量隨著感染時間增加而上升,並且我們的實驗結果顯示,在抑制Grb2 表現的細胞中,EV71 的增殖在病毒蛋白、病毒RNA 和病毒生成量都有明顯的上升。Grb2 在RTKs 訊息傳導路徑中扮演十分重要的功能,所以我們進一步去探討Grb2 的表現量是否會影響病毒感染宿主後,所引發的訊號傳遞改變。而先前研究報導EV71 感染後ERK 會活化,而ERK 的活化是病毒複製所必須的,而在我們的實驗數據顯示,在EV71感染的晚期ERK 路徑會活化,且抑制Grb2 表現量的組別ERK 的活化是增加的。這些實驗數據顯示EV71 感染後miR-197 的表現量下降,而使下游的目標基因Grb2 的表現量增加,進而調節下游的ERK 路徑活化。
We found that miR-197 was downregulated in response to EV71
infection and the presence of miR-197 was unfavorable for EV71
replication. Nine authentic target genes of miR-197 were identified by
mass-spectrometry- based quantitative proteomic approach coupled with
stable isotope labeling with amino acids in cell culture (SILAC), aided by
TargetScan algorithm and 3’UTR reporter assay. Grb2 (Growth factor
receptor-bound protein 2), one of miR-197 target genes, was chosen to study
its biological role in EV71 replication. MiR-197 expression gradually
decreased after EV71 infection, and that leads to Grb2 expression level was
increased correspondingly in a time-dependent manner. Our results showed
that EV71 replication (in viral protein, viral RNA, and viral production level)
was increased in GRB2 silenced cells compared with scramble siRNA
treated cells. Grb2 was an important adaptor protein in RTKs signaling
pathway, so we further investigated whether grb2 expression level was
affected when viral infection-mediated signaling transduction. Previous
studies support that activation of the ERK pathway as being a necessary
cellular modification to support EV71 proliferation. In our study, ERK was
activated at the late phase of viral infection, and the phosphorylation of
ERK was enhanced in siGrb2-treated cells after EV71 infection. These data
indicated that EV71-induced downregulation of miR-197 may constitute a
new mechanism that increases the expression of Grb2 to modulate ERK
activation that was required for EV71 replication.
指導教授推薦書
口試委員審定書
誌謝------------------------------------------------------------------------------iii
縮寫表-------------------------------------------------------------------------- iv
中文摘要----------------------------------------------------------------------- v
英文摘要-----------------------------------------------------------------------vi
目錄-----------------------------------------------------------------------------vii
圖目錄--------------------------------------------------------------------------ix
表目錄-------------------------------------------------------------------------- x
附錄目錄--------------------------------------------------------------------------xi
第一章、緒論
一、腸病毒的簡介-----------------------------------------------------------1
1.1 腸病毒的分類-------------------------------------------------------1
1.2腸病毒的傳染途徑和症狀-----------------------------------------1
1.3腸病毒的結構--------------------------------------------------------2
1.4腸病毒的生活史-----------------------------------------------------3
1.5病毒與宿主受體之間的關係--------------------------------------5
1.6病毒與宿主間的訊號傳遞之關係--------------------------------6
二、MicroRNA的介紹------------------------------------------------------8
2.1 MicroRNA的作用機制-------------------------------------------8
2.2 MicroRNA與病毒之間的關係----------------------------------9
三、GRB2介紹--------------------------------------------------------------11
3.1 Grb2的結構---------------------------------------------------------11
3.2 Grb2的功能--------------------------------------------------------11
3.3 Grb2與病毒之間的關係-----------------------------------------12
3.4 Gab蛋白與Grb2蛋白之間的關係-----------------------------14
第二章、研究目的----------------------------------------------------------17
第三章、材料與方法-------------------------------------------------------19
3.1 材料------------------------------------------------------------------19
3.2 實驗方法------------------------------------------------------------21
第四章、實驗結果----------------------------------------------------------28
第五章、討論----------------------------------------------------------------43
參考文獻----------------------------------------------------------------------50
附錄----------------------------------------------------------------------------83

圖目錄
圖一、Grb2為miR-197的目標基因-----------------------------------------64
圖二、探討Grb2再宿主細胞中的表現量--------------------------------------66
圖三、探測Grb2 siRNA最低有效的抑制濃度和不同廠牌siRNA之比較----------------67
圖四、探討抑制內生性的Grb2的表現量對於EV71病毒複製的影響--------------------68
圖五、探討大量表達Grb2對病毒複製的影響---------------------------70
圖六、利用FACS的方式分析EV71的receptor是否會受到抑制Grb2的表現量而影響EV71的Binding-------------72
圖七、探討EGFR訊息傳遞與MEK/ERK活化之間的關係----------73
圖八、EV71感染對EGFR訊息傳遞的影響------------------------------74
圖九、EV71 感染對宿主細胞的Gab family訊息傳遞的狀況--------75
圖十、探討抑制ERK路徑的活化對病毒複製的影響-------------------76
圖十一、探討在EV71病毒感染下,抑制內生性的Grb2是否會影響ERK路徑活化 --------------------------77

表目錄
表一、實驗所需要的抗體名稱、廠牌、貨號和稀釋倍數。--------78
表二、實驗所需要的引子。------------------------------------------------79
表三、實驗所需的siRNA序列。-----------------------------------------80
表四、實驗所需的質體列表。---------------------------------------------81
表五、用TargetScan資料庫比對在Grb2 3’UTR上的miR-197的Target site。(GeneBank accession: NM_002086)---------------------------------82

1. Alam, S.M., Rajendran, M., Ouyang, S., Veeramani, S., Zhang, L., Lin, M.F., 2009. A novel role of Shc adaptor proteins in steroid hormone-regulated cancers. Endocrine-related cancer 16, 1-16
2. Avruch, J., Zhang, X.F., Kyriakis, J.M., 1994. Raf meets Ras: completing the framework of a signal transduction pathway. Trends in biochemical sciences 19, 279-283.
3. Bier, E., 2005. Drosophila, the golden bug, emerges as a tool for human genetics. Nature reviews. Genetics 6, 9-23.
4. Blanz, J., Groth, J., Zachos, C., Wehling, C., Saftig, P., Schwake, M., 2010. Disease-causing mutations within the lysosomal integral membrane protein type 2 (LIMP-2) reveal the nature of binding to its ligand beta-glucocerebrosidase. Human molecular genetics 19, 563-572.
5. Bonderoff, J.M., Larey, J.L., Lloyd, R.E., 2008. Cleavage of poly(A)-binding protein by poliovirus 3C proteinase inhibits viral internal ribosome entry site-mediated translation. Journal of virology 82, 9389-9399.
6. Brown, B.A., Pallansch, M.A., 1995. Complete nucleotide sequence of enterovirus 71 is distinct from poliovirus. Virus research 39, 195-205.
7. Buday, L., Downward, J., 1993. Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell 73, 611-620.
8. Cai, T., Nishida, K., Hirano, T., Khavari, P.A., 2002. Gab1 and SHP-2 promote Ras/MAPK regulation of epidermal growth and differentiation. The Journal of cell biology 159, 103-112.
9. Caliguiri, L.A., Mosser, A.G., 1971. Proteins associated with the poliovirus RNA replication complex. Virology 46, 375-386.
10. Cameron, J.E., Fewell, C., Yin, Q., McBride, J., Wang, X., Lin, Z., Flemington, E.K., 2008. Epstein-Barr virus growth/latency III program alters cellular microRNA expression. Virology 382, 257-266.
11. Caro, V., Guillot, S., Delpeyroux, F., Crainic, R., 2001. Molecular strategy for 'serotyping' of human enteroviruses. The Journal of general virology 82, 79-91.
12. Chardin, P., Camonis, J.H., Gale, N.W., van Aelst, L., Schlessinger, J., Wigler, M.H., Bar-Sagi, D., 1993. Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2. Science 260, 1338-1343.
13. Chen, Z., Kolokoltsov, A.A., Wang, J., Adhikary, S., Lorinczi, M., Elferink, L.A., Davey, R.A., 2012. GRB2 interaction with the ecotropic murine leukemia virus receptor, mCAT-1, controls virus entry and is stimulated by virus binding. Journal of virology 86, 1421-1432.
14. Corominola, H., Conner, L.J., Beavers, L.S., Gadski, R.A., Johnson, D., Caro, J.F., Rafaeloff-Phail, R., 2001. Identification of novel genes differentially expressed in omental fat of obese subjects and obese type 2 diabetic patients. Diabetes 50, 2822-2830.
15. Couturier, J.P., Root-Bernstein, R.S., 2005. HIV may produce inhibitory microRNAs (miRNAs) that block production of CD28, CD4 and some interleukins. Journal of theoretical biology 235, 169-184.
16. Cunnick, J.M., Mei, L., Doupnik, C.A., Wu, J., 2001. Phosphotyrosines 627 and 659 of Gab1 constitute a bisphosphoryl tyrosine-based activation motif (BTAM) conferring binding and activation of SHP2. The Journal of biological chemistry 276, 24380-24387.
17. de Breyne, S., Bonderoff, J.M., Chumakov, K.M., Lloyd, R.E., Hellen, C.U., 2008. Cleavage of eukaryotic initiation factor eIF5B by enterovirus 3C proteases. Virology 378, 118-122.
18. Donato, R., Russo-Marie, F., 1999. The annexins: structure and functions. Cell calcium 26, 85-89.
19. Egan, S.E., Giddings, B.W., Brooks, M.W., Buday, L., Sizeland, A.M., Weinberg, R.A., 1993. Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 363, 45-51.
20. Ehrenfeld, E., Maizel, J.V., Summers, D.F., 1970. Soluble RNA polymerase complex from poliovirus-infected HeLa cells. Virology 40, 840-846.
21. Eskelinen, E.L., Tanaka, Y., Saftig, P., 2003. At the acidic edge: emerging functions for lysosomal membrane proteins. Trends in cell biology 13, 137-145.
22. Farooq, A., Plotnikova, O., Zeng, L., Zhou, M.M., 1999. Phosphotyrosine binding domains of Shc and insulin receptor substrate 1 recognize the NPXpY motif in a thermodynamically distinct manner. The Journal of biological chemistry 274, 6114-6121.
23. Gale, N.W., Kaplan, S., Lowenstein, E.J., Schlessinger, J., Bar-Sagi, D., 1993. Grb2 mediates the EGF-dependent activation of guanine nucleotide exchange on Ras. Nature 363, 88-92.
24. Gerke, V., Moss, S.E., 2002. Annexins: from structure to function. Physiological reviews 82, 331-371.
25. Gong, Q., Cheng, A.M., Akk, A.M., Alberola-Ila, J., Gong, G., Pawson, T., Chan, A.C., 2001. Disruption of T cell signaling networks and development by Grb2 haploid insufficiency. Nature immunology 2, 29-36.
26. Gual, P., Giordano, S., Williams, T.A., Rocchi, S., Van Obberghen, E., Comoglio, P.M., 2000. Sustained recruitment of phospholipase C-gamma to Gab1 is required for HGF-induced branching tubulogenesis. Oncogene 19, 1509-1518.
27. Haghighat, A., Svitkin, Y., Novoa, I., Kuechler, E., Skern, T., Sonenberg, N., 1996. The eIF4G-eIF4E complex is the target for direct cleavage by the rhinovirus 2A proteinase. Journal of virology 70, 8444-8450.
28. Hammond, S.M., Bernstein, E., Beach, D., Hannon, G.J., 2000. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293-296.
29. Hariharan, M., Scaria, V., Pillai, B., Brahmachari, S.K., 2005. Targets for human encoded microRNAs in HIV genes. Biochemical and biophysical research communications 337, 1214-1218.
30. Holgado-Madruga, M., Emlet, D.R., Moscatello, D.K., Godwin, A.K., Wong, A.J., 1996. A Grb2-associated docking protein in EGF- and insulin-receptor signalling. Nature 379, 560-564.
31. Huang, C.C., Liu, C.C., Chang, Y.C., Chen, C.Y., Wang, S.T., Yeh, T.F., 1999. Neurologic complications in children with enterovirus 71 infection. The New England journal of medicine 341, 936-942.
32. Huang, H.I., Weng, K.F., Shih, S.R., 2012. Viral and host factors that contribute to pathogenicity of enterovirus 71. Future microbiology 7, 467-479.
33. Huber, M., Watson, K.A., Selinka, H.C., Carthy, C.M., Klingel, K., McManus, B.M., Kandolf, R., 1999. Cleavage of RasGAP and phosphorylation of mitogen-activated protein kinase in the course of coxsackievirus B3 replication. Journal of virology 73, 3587-3594.
34. Hussain, K.M., Leong, K.L., Ng, M.M., Chu, J.J., 2011. The essential role of clathrin-mediated endocytosis in the infectious entry of human enterovirus 71. The Journal of biological chemistry 286, 309-321.
35. Hutvagner, G., McLachlan, J., Pasquinelli, A.E., Balint, E., Tuschl, T., Zamore, P.D., 2001. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834-838.
36. Ingham, R.J., Santos, L., Dang-Lawson, M., Holgado-Madruga, M., Dudek, P., Maroun, C.R., Wong, A.J., Matsuuchi, L., Gold, M.R., 2001. The Gab1 docking protein links the b cell antigen receptor to the phosphatidylinositol 3-kinase/Akt signaling pathway and to the SHP2 tyrosine phosphatase. The Journal of biological chemistry 276, 12257-12265.
37. Joachims, M., Van Breugel, P.C., Lloyd, R.E., 1999. Cleavage of poly(A)-binding protein by enterovirus proteases concurrent with inhibition of translation in vitro. Journal of virology 73, 718-727.
38. Kerekatte, V., Keiper, B.D., Badorff, C., Cai, A., Knowlton, K.U., Rhoads, R.E., 1999. Cleavage of Poly(A)-binding protein by coxsackievirus 2A protease in vitro and in vivo: another mechanism for host protein synthesis shutoff? Journal of virology 73, 709-717.
39. Ketting, R.F., Fischer, S.E., Bernstein, E., Sijen, T., Hannon, G.J., Plasterk, R.H., 2001. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes &; development 15, 2654-2659.
40. Kim, J., Hajjar, K.A., 2002. Annexin II: a plasminogen-plasminogen activator co-receptor. Frontiers in bioscience : a journal and virtual library 7, d341-348.
41. Komatsu, H., Shimizu, Y., Takeuchi, Y., Ishiko, H., Takada, H., 1999. Outbreak of severe neurologic involvement associated with Enterovirus 71 infection. Pediatric neurology 20, 17-23.
42. Krausslich, H.G., Nicklin, M.J., Toyoda, H., Etchison, D., Wimmer, E., 1987. Poliovirus proteinase 2A induces cleavage of eucaryotic initiation factor 4F polypeptide p220. Journal of virology 61, 2711-2718.
43. Kuyumcu-Martinez, N.M., Joachims, M., Lloyd, R.E., 2002. Efficient cleavage of ribosome-associated poly(A)-binding protein by enterovirus 3C protease. Journal of virology 76, 2062-2074.
44. Kuyumcu-Martinez, N.M., Van Eden, M.E., Younan, P., Lloyd, R.E., 2004. Cleavage of poly(A)-binding protein by poliovirus 3C protease inhibits host cell translation: a novel mechanism for host translation shutoff. Molecular and cellular biology 24, 1779-1790.
45. Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H., Kim, V.N., 2004. MicroRNA genes are transcribed by RNA polymerase II. The EMBO journal 23, 4051-4060.
46. Ley, K., Kansas, G.S., 2004. Selectins in T-cell recruitment to non-lymphoid tissues and sites of inflammation. Nature reviews. Immunology 4, 325-335.
47. Li, N., Batzer, A., Daly, R., Yajnik, V., Skolnik, E., Chardin, P., Bar-Sagi, D., Margolis, B., Schlessinger, J., 1993. Guanine-nucleotide-releasing factor hSos1 binds to Grb2 and links receptor tyrosine kinases to Ras signalling. Nature 363, 85-88.
48. Liebig, H.D., Seipelt, J., Vassilieva, E., Gradi, A., Kuechler, E., 2002. A thermosensitive mutant of HRV2 2A proteinase: evidence for direct cleavage of eIF4GI and eIF4GII. FEBS letters 523, 53-57.
49. Lim, B.K., Nam, J.H., Gil, C.O., Yun, S.H., Choi, J.H., Kim, D.K., Jeon, E.S., 2005. Coxsackievirus B3 replication is related to activation of the late extracellular signal-regulated kinase (ERK) signal. Virus research 113, 153-157.
50. Lin, Y.W., Lin, H.Y., Tsou, Y.L., Chitra, E., Hsiao, K.N., Shao, H.Y., Liu, C.C., Sia, C., Chong, P., Chow, Y.H., 2012. Human SCARB2-mediated entry and endocytosis of EV71. PloS one 7, e30507.
51. Lonberg-Holm, K., Gosser, L.B., Kauer, J.C., 1975. Early alteration of poliovirus in infected cells and its specific inhibition. The Journal of general virology 27, 329-342.
52. Lowenstein, E.J., Daly, R.J., Batzer, A.G., Li, W., Margolis, B., Lammers, R., Ullrich, A., Skolnik, E.Y., Bar-Sagi, D., Schlessinger, J., 1992. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell 70, 431-442.
53. Lu, S., Cullen, B.R., 2004. Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and MicroRNA biogenesis. Journal of virology 78, 12868-12876.
54. Lum, L.C., Wong, K.T., Lam, S.K., Chua, K.B., Goh, A.Y., Lim, W.L., Ong, B.B., Paul, G., AbuBakar, S., Lambert, M., 1998. Fatal enterovirus 71 encephalomyelitis. The Journal of pediatrics 133, 795-798.
55. Lynch, D.K., Daly, R.J., 2002. PKB-mediated negative feedback tightly regulates mitogenic signalling via Gab2. The EMBO journal 21, 72-82.
56. McDonald, C.B., Seldeen, K.L., Deegan, B.J., Bhat, V., Farooq, A., 2010. Assembly of the Sos1-Grb2-Gab1 ternary signaling complex is under allosteric control. Archives of biochemistry and biophysics 494, 216-225.
57. McMinn, P.C., 2002. An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS microbiology reviews 26, 91-107.
58. Muir, P., Kammerer, U., Korn, K., Mulders, M.N., Poyry, T., Weissbrich, B., Kandolf, R., Cleator, G.M., van Loon, A.M., 1998. Molecular typing of enteroviruses: current status and future requirements. The European Union Concerted Action on Virus Meningitis and Encephalitis. Clinical microbiology reviews 11, 202-227.
59. Nishida, K., Hirano, T., 2003. The role of Gab family scaffolding adapter proteins in the signal transduction of cytokine and growth factor receptors. Cancer science 94, 1029-1033.
60. Nishida, K., Wang, L., Morii, E., Park, S.J., Narimatsu, M., Itoh, S., Yamasaki, S., Fujishima, M., Ishihara, K., Hibi, M., Kitamura, Y., Hirano, T., 2002. Requirement of Gab2 for mast cell development and KitL/c-Kit signaling. Blood 99, 1866-1869.
61. Nishimura, Y., Shimojima, M., Tano, Y., Miyamura, T., Wakita, T., Shimizu, H., 2009. Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nature medicine 15, 794-797.
62. O'Carroll, D., Schaefer, A., 2013. General principals of miRNA biogenesis and regulation in the brain. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 38, 39-54.
63. Oberste, M.S., Maher, K., Kilpatrick, D.R., Flemister, M.R., Brown, B.A., Pallansch, M.A., 1999. Typing of human enteroviruses by partial sequencing of VP1. Journal of clinical microbiology 37, 1288-1293.
64. Omoto, S., Fujii, Y.R., 2005. Regulation of human immunodeficiency virus 1 transcription by nef microRNA. The Journal of general virology 86, 751-755.
65. Otowa, T., Yoshida, E., Sugaya, N., Yasuda, S., Nishimura, Y., Inoue, K., Tochigi, M., Umekage, T., Miyagawa, T., Nishida, N., Tokunaga, K., Tanii, H., Sasaki, T., Kaiya, H., Okazaki, Y., 2009. Genome-wide association study of panic disorder in the Japanese population. Journal of human genetics 54, 122-126.
66. Pedersen, I.M., Cheng, G., Wieland, S., Volinia, S., Croce, C.M., Chisari, F.V., David, M., 2007. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 449, 919-922.
67. Pfeffer, S., Zavolan, M., Grasser, F.A., Chien, M., Russo, J.J., Ju, J., John, B., Enright, A.J., Marks, D., Sander, C., Tuschl, T., 2004. Identification of virus-encoded microRNAs. Science 304, 734-736.
68. Pleschka, S., 2008. RNA viruses and the mitogenic Raf/MEK/ERK signal transduction cascade. Biological chemistry 389, 1273-1282.
69. Reczek, D., Schwake, M., Schroder, J., Hughes, H., Blanz, J., Jin, X., Brondyk, W., Van Patten, S., Edmunds, T., Saftig, P., 2007. LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of beta-glucocerebrosidase. Cell 131, 770-783.
70. Rintala-Dempsey, A.C., Rezvanpour, A., Shaw, G.S., 2008. S100-annexin complexes--structural insights. The FEBS journal 275, 4956-4966.
71. Robb, G.B., Rana, T.M., 2007. RNA helicase A interacts with RISC in human cells and functions in RISC loading. Molecular cell 26, 523-537.
72. Rocchi, S., Tartare-Deckert, S., Murdaca, J., Holgado-Madruga, M., Wong, A.J., Van Obberghen, E., 1998. Determination of Gab1 (Grb2-associated binder-1) interaction with insulin receptor-signaling molecules. Molecular endocrinology 12, 914-923.
73. Rom, S., Pacifici, M., Passiatore, G., Aprea, S., Waligorska, A., Del Valle, L., Peruzzi, F., 2011. HIV-1 Tat binds to SH3 domains: cellular and viral outcome of Tat/Grb2 interaction. Biochimica et biophysica acta 1813, 1836-1844.
74. Rozakis-Adcock, M., Fernley, R., Wade, J., Pawson, T., Bowtell, D., 1993. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1. Nature 363, 83-85.
75. Rozakis-Adcock, M., McGlade, J., Mbamalu, G., Pelicci, G., Daly, R., Li, W., Batzer, A., Thomas, S., Brugge, J., Pelicci, P.G., et al., 1992. Association of the Shc and Grb2/Sem5 SH2-containing proteins is implicated in activation of the Ras pathway by tyrosine kinases. Nature 360, 689-692.
76. Scaria, V., Hariharan, M., Pillai, B., Maiti, S., Brahmachari, S.K., 2007. Host-virus genome interactions: macro roles for microRNAs. Cellular microbiology 9, 2784-2794.
77. Shi, W., Hou, X., Li, X., Peng, H., Shi, M., Jiang, Q., Liu, X., Ji, Y., Yao, Y., He, C., Lei, X., 2013. Differential gene expressions of the MAPK signaling pathway in enterovirus 71-infected rhabdomyosarcoma cells. The Brazilian journal of infectious diseases : an official publication of the Brazilian Society of Infectious Diseases 17, 410-417.
78. Solomon, T., Lewthwaite, P., Perera, D., Cardosa, M.J., McMinn, P., Ooi, M.H., 2010. Virology, epidemiology, pathogenesis, and control of enterovirus 71. The Lancet infectious diseases 10, 778-790.
79. Somers, W.S., Tang, J., Shaw, G.D., Camphausen, R.T., 2000. Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLe(X) and PSGL-1. Cell 103, 467-479.
80. Songyang, Z., Shoelson, S.E., Chaudhuri, M., Gish, G., Pawson, T., Haser, W.G., King, F., Roberts, T., Ratnofsky, S., Lechleider, R.J., et al., 1993. SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767-778.
81. Sprang, S.R., 1997. G proteins, effectors and GAPs: structure and mechanism. Current opinion in structural biology 7, 849-856.
82. Strunk, U., Saffran, H.A., Wu, F.W., Smiley, J.R., 2013. Role of herpes simplex virus VP11/12 tyrosine-based motifs in binding and activation of the Src family kinase Lck and recruitment of p85, Grb2, and Shc. Journal of virology 87, 11276-11286.
83. Thompson, S.R., Sarnow, P., 2003. Enterovirus 71 contains a type I IRES element that functions when eukaryotic initiation factor eIF4G is cleaved. Virology 315, 259-266.
84. Triboulet, R., Mari, B., Lin, Y.L., Chable-Bessia, C., Bennasser, Y., Lebrigand, K., Cardinaud, B., Maurin, T., Barbry, P., Baillat, V., Reynes, J., Corbeau, P., Jeang, K.T., Benkirane, M., 2007. Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 315, 1579-1582.
85. Tung, W.H., Hsieh, H.L., Yang, C.M., 2010a. Enterovirus 71 induces COX-2 expression via MAPKs, NF-kappaB, and AP-1 in SK-N-SH cells: Role of PGE(2) in viral replication. Cellular signalling 22, 234-246.
86. Tung, W.H., Lee, I.T., Hsieh, H.L., Yang, C.M., 2010b. EV71 induces COX-2 expression via c-Src/PDGFR/PI3K/Akt/p42/p44 MAPK/AP-1 and NF-kappaB in rat brain astrocytes. Journal of cellular physiology 224, 376-386.
87. Wang, B., Xi, X., Lei, X., Zhang, X., Cui, S., Wang, J., Jin, Q., Zhao, Z., 2013. Enterovirus 71 protease 2Apro targets MAVS to inhibit anti-viral type I interferon responses. PLoS pathogens 9, e1003231.
88. Wang, B., Zhang, H., Zhu, M., Luo, Z., Peng, Y., 2012. MEK1-ERKs signal cascade is required for the replication of Enterovirus 71 (EV71). Antiviral research 93, 110-117.
89. Whitton, J.L., Cornell, C.T., Feuer, R., 2005. Host and virus determinants of picornavirus pathogenesis and tropism. Nature reviews. Microbiology 3, 765-776.
90. Wohrle, F.U., Daly, R.J., Brummer, T., 2009. Function, regulation and pathological roles of the Gab/DOS docking proteins. Cell communication and signaling : CCS 7, 22.
91. Wong, W.R., Chen, Y.Y., Yang, S.M., Chen, Y.L., Horng, J.T., 2005. Phosphorylation of PI3K/Akt and MAPK/ERK in an early entry step of enterovirus 71. Life sciences 78, 82-90.
92. Yamayoshi, S., Iizuka, S., Yamashita, T., Minagawa, H., Mizuta, K., Okamoto, M., Nishimura, H., Sanjoh, K., Katsushima, N., Itagaki, T., Nagai, Y., Fujii, K., Koike, S., 2012. Human SCARB2-dependent infection by coxsackievirus A7, A14, and A16 and enterovirus 71. Journal of virology 86, 5686-5696.
93. Yamayoshi, S., Yamashita, Y., Li, J., Hanagata, N., Minowa, T., Takemura, T., Koike, S., 2009. Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nature medicine 15, 798-801.
94. Yang, S.L., Chou, Y.T., Wu, C.N., Ho, M.S., 2011. Annexin II binds to capsid protein VP1 of enterovirus 71 and enhances viral infectivity. Journal of virology 85, 11809-11820.
95. Yu, C.F., Roshan, B., Liu, Z.X., Cantley, L.G., 2001. ERK regulates the hepatocyte growth factor-mediated interaction of Gab1 and the phosphatidylinositol 3-kinase. The Journal of biological chemistry 276, 32552-32558.
96. Zheng, Z., Li, H., Zhang, Z., Meng, J., Mao, D., Bai, B., Lu, B., Mao, P., Hu, Q., Wang, H., 2011. Enterovirus 71 2C protein inhibits TNF-alpha-mediated activation of NF-kappaB by suppressing IkappaB kinase beta phosphorylation. Journal of immunology 187, 2202-2212.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top