跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/22 00:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃嘉輝
研究生(外文):Chia-Hui Huang
論文名稱:斜向型非均向TiO2緻密層應用於染料敏化太陽能電池
論文名稱(外文):The Application of a Slant-Type Anisotropic TiO2 Compact Layer in Dye-Sensitized Solar Cells
指導教授:劉竹峯
指導教授(外文):Ju-Feng Liu
口試委員:劉竹峯洪正聰林義彬
口試委員(外文):Ju-Feng LiuCheng-Tsung HungYih-Bin Lin
口試日期:2014-07-02
學位類別:碩士
校院名稱:中華科技大學
系所名稱:電子工程研究所在職專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:55
中文關鍵詞:緻密層染料敏化太陽能電池非均向濺鍍二氧化鈦
外文關鍵詞:compact layerdye-sensitized solar cellsanisotropicsputterTiO2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究提出在染料敏化太陽能電池使用斜向型非均向TiO2緻密層結構,使緻密層結構更為密實以減少逆反應,並可於緻密層介面形成特殊紋理提升光捕捉效率,而使電池光電轉換效率大幅提升。非均向TiO2緻密層以射頻濺鍍法,藉由調整載具角度以20°、60°及80°三種角度,將TiO2薄膜沉積在ITO導電玻璃上,以製作染料敏化太陽能電池。另外我們亦製作傳統0°之非均向TiO2緻密層以作為比較。實驗結果顯示,將非均向TiO2緻密層之奈米柱做傾斜後,電池轉換效率可由傳統0°之1.58%,分別對應20°、60°及80°三種沈積角度,提升至2.66%、3.18%、4.38%,有非常好的改善效果,且改善程度隨沉積角度增加而提升。
We present a slant-type anisotropic TiO2 compact layer applied on dye-sensitized solar cells (DSSC). Because the back reaction is reduced owing to the denser compact layer structure and the light harvesting efficiency is enhanced owing to the special texture on the surface of the compact layer, the efficiency of the conversion of solar energy to electricity is significantly improved. The slant-type anisotropic TiO2 compact layers were grown on ITO conductive glass substrates using radio frequency sputtering and then DSSC were produced for evaluating the effect of the compact layers in DSSC. By adjusting the angle of the vehicle at 20°, 60°and 80°, the TiO2 films were deposited. We also grew conventional vertically aligned (0°) anisotropic TiO2 compact layers for comparison. Experimental results show that the average conversion efficiency of the conventional DSSC with 0° anisotropic compact layer is 1.58%, and the average efficiency of the DSSC with 20°, 60°and 80° depositing-angle anisotropic compact layers is 2.66%, 3.18% and 4.38%, respectively. The effect of the slant–type anisotropic TiO2 compact layer in DSSC is very prominent, and the effect is improved with increasing the depositing-angle of the anisotropic TiO2 compact layer.
摘 要 i
Abstract ii
目 次 iii
表目錄 vi
圖目錄 vii
第一章 緒論 1
第一節 簡介 1
第二節 再生能源發展 2
壹、 太陽能 2
貳、 水力發電 4
參、 風力發電 5
肆、 地熱能源 6
第三節 研究動機 7
第四節 論文整體架構 9
第二章 染料敏化太陽能電池原理與設計 10
第一節 染料敏化太陽能電池基本原理 10
第二節 染料敏化太陽能電池元件特性 11
第三節 染料敏化太陽能電池結構 12
壹、 光電極 12
貳、 染料 14
參、 電解液 15
肆、 對電極 16
第三章 實驗步驟與儀器介紹 17
第一節 實驗步驟 17
壹、 光電極基板清洗 17
貳、 濺鍍非均向緻密層TiO2薄膜 18
參、 塗佈TiO2漿料薄膜 19
肆、 高溫退火爐 19
伍、 浸泡N719染料 19
陸、 對電極製作 19
柒、 加入電解液及封裝 20
第二節 實驗量測儀器 20
壹、 X光繞射分析儀(X-ray Diffractometer, XRD) 20
貳、 掃描式電子顯微鏡(Scanning Electron Microcope,SEM) 21
參、 光譜儀 (Spectrometers) 22
肆、 霍爾量測(Hall Effect) 23
第三節 實驗製作儀器 26
壹、 射頻濺鍍機 (RF Sputtered) 26
貳、 快速熱退火 (Rapid Thermal Annealing, RTA) 29
參、 旋轉塗佈機 (Spin coating) 30
肆、 太陽光模擬器 (Solar Simulator) 31
第四章 染料敏化太陽能TiO2緻密層結果與討論 33
第一節 非均向斜向薄膜分析 33
第二節 X光繞射分析 35
第三節 不同角度TiO2薄膜電阻率變化 36
第四節 不同角度穿透率變化 37
第五節 轉換效率 38
第五章 結論 40
參考文獻 41


[1]National Renewable Energy Laboratory, “Best research-cell efficiencies 1975-2013,” 2013 Solar Technologies Market Report, 2013.
[2]Panasonic Corporation, “Panasonic HIT® solar cell achieves world's highest conversion efficiency of 24.7% at research level,” Headquarters News, 2014.
[3]http://www.taipower.com.tw/content/about/about02.aspx?PType=2.
[4]http://www.energyland.emsd.gov.hk/tc/energy/renewable/geothermal.html.
[5]E. Becquerel, “Mémoire sur les effets électriques produits sous l'influence desrayons solaires,” Comptes Rendus, vol. 9, pp. 561-567, 1839.
[6]馬廷麗,雲斯寧,“染料敏化太陽能電池,”化學工業出版社,2013年。
[7]H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, “Dye sensitized zinc oxide/aqueous electrolyte/platinum photocell,” Nature, vol. 261, pp. 402-403, 1976.
[8]M. Matsumura, S. Matsudaira, H. Tsubomura,“Dye sensitization and surface structures of semiconductor electrodes”, Industrial & Engineering Chemistry Product Research and Development, vol. 19, no. 3, pp. 415-421 , 1980
[9]B. O’Regan and M. Gratzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, pp. 737-740, 1991.
[10]M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos and M. Gratzel, “Conversion of light to electricity by cis-X2-bis (2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X= Cl−, Br−, Iod−, CN−, and SCN−) on nanocrystalline TiO2 electrodes,” Journal of the American Chemical Society, vol. 115, pp. 6382, 1993.
[11]Peter Péchy, Thierry Renouard, M. Shaik, Zakeeruddin, Robin Humphry-Baker, Pascal Comte, Paul Liska, Le Cevey, Emiliana Costa, Valery Shklover, Leone Spiccia, Glen B. Deacon, Carlo A. Bignozzi, Michael Grätzel, “Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” Journal of the American Chemical Society, vol. 123, pp. 1613-1624, 2001.
[12]K. Mohammad, Nazeeruddin Filippo De Angelis, Simona Fantacci, Annabella Selloni, Guido Viscardi, Paul Liska, Seigo Ito, Bessho Takeru, Michael Grätzel, “Combined experimental and DFT-TDDFT computational study of photo electrochemical cell ruthenium sensitizers, ” Journal of the American Chemical Society, vol. 127, pp. 16835-16847, 2005.
[13]M. Gratzel, “International Symposium on Innovative Solar Cells 2009” Journal of the American Chemical Society, vol. 42, pp. 1788, 2009.
[14]J. K. Koh, J. Kim, B. Kim, J. H. Kim, E. Kim, “Highly efficient, iodine-free dye-sensitized solar cells with solid-state synthesis of conducting polymers,” Advanced Materials, vol. 23, pp. 1641-1646, 2011.
[15]Petra J. Cameron and Laurence M. Peter, “Characterization of Titanium Dioxide Blocking Layers in Dye-Sensitized Nano crystalline Solar Cells,” Journal of Physical Chemistry B, vol. 107, pp. 14394-14400, 2003.
[16]P. J. Cameron and L. M. Peter, “How Does Back-Reaction at the Conducting Glass Substrate Influence the Dynamic Photo voltage Response of Nano crystalline Dye-Sensitized Solar Cells? ” Journal of Physical Chemistry B, vol. 109, pp. 7392-7398, 2005.
[17]S. J. Roh, R. S. Mane, S. K. Min, W. J. Lee, C. D. Lokhande, and S. H. Han, “Achievement of 4.51% conversion efficiency using ZnO recombination barrier layer in TiO2 based dye sensitized solar cells,” Applied Physics Letters, vol. 89, no. 25, Article ID 253512, 2006.
[18]J. Xia, N. Masaki, K. Jiang, and S. Yanagida, “Sputtered Nb2O5 as a novel blocking layer at conducting glass/TiO2 interfaces in dye-sensitized ionic liquid solar cells,” Journal of Physical Chemistry C, vol. 111, no. 22, pp. 8092–8097, 2007.
[19]K. S. Ahn, M. S. Kang, J. W. Lee, and Y. S. Kang, “Effects of a surfactant-templated nano porous TiO2 interlayer on dye sensitized solar cells,” Journal of Applied Physics, vol. 101, no. 8, Article ID 084312, 2007.
[20]Lung-Chien Chen, Cheng-Chiang Chen, and Bo-Shiang Tseng “Improvement of Short-Circuit Current Density in Dye-Sensitized Solar Cells Using Sputtered Nano columnar TiO2 Compact Layer.,” Journal of Nanomaterials, Article ID 374052, 2010.
[21]Ryuzi Katoh, Akihiro Furube, Toshitada Yoshihara, Kohjiro Hara, Gaku Fujihashi, Shingo Takano, Shigeo Murata, Hironori Arakawa, and M. Tachiya, “Efficiencies of Electron Injection from Excited N3 Dye into Nano crystalline Semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) Films, ” Journal of Physical Chemistry B, vol. 108, pp. 4818-4822, 2004.
[22]N. G. Park, J. van de Lagemaat, A. J. Frank, “Comparison of dye-sensitized rutile and anatase based TiO2 solar cells,” Journal of Physical Chemistry B, vol. 104, pp. 8989-8994, 2000.
[23]R. Austin and S. f. Lim, “The Sackler Colloquium on Pormoses and Perils in Nanotechnology for Medicine,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 45, pp. 17217-17221, 2008.
[24]S. Woodley and C. Catlow, “Structure prediction of titania phases: Implementation of Darwinian versus Lamarckian concepts in an Evolutionary Algorithm,” Computational Materials Science, vol. 45, no. 1, pp. 84-95, 2009.
[25]陳富亮,“最新奈米光觸媒應用技術,”林斯頓國際,pp. 46-47,2003年。
[26]張正華,李陵嵐,葉處平,楊平華,“有機與塑膠太陽能電池,”五南圖書出版有限公司,2007年。
[27]G. Wolfbauer, A. M. Bond, J. C. Eklund, D. R. MacFarlane, “A Channel Flow Cell System Specifically Designed to Test the Efficiency of Redox Suttles in Dye Sensitized Solar Cells,” Solar Energy Mater & Solar Cells, vol. 70, pp. 85-101, 2001.
[28]J. Chen, K. Li, Y. Luo, et al. “A flexible carbon counter electrode for dye-sensitized solar cells.” Carbon, vol. 47, pp. 2704-2708, 2009.
[29]Q. W. Jiang, G. R. Li, F. Wang, et al. “Highly ordered mesoporous carbon arrays from natural wood materials as counter electrode for dye-sensitized solar cells.” Electrochemistry Communications, vol. 12, pp. 924-927, 2010.
[30]G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye sensitized solar cells,” Nano Letters, vol. 6, no. 2, pp. 215-218, 2006.
[31]K. P. Wang and H. Teng, “Structure-intact TiO2 nanoparticles for efficient electron transport in dye-sensitized solar cells,” Applied Physics Letters, vol. 91, no. 17, Article ID 173102, 2007.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊