(3.236.231.61) 您好!臺灣時間:2021/05/11 16:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:浦和達
研究生(外文):Mohannad Majid Saleem Al Bosta
論文名稱:6061鋁合金表面以微弧氧化生成陶瓷膜之紅外線放射率研究
論文名稱(外文):The Infrared Emissivity of Ceramic Coating Produced by Micro-Arc Oxidation Process on Surface of 6061 Aluminium Alloy
指導教授:馬廣仁
指導教授(外文):Kung-Jeng Ma
學位類別:博士
校院名稱:中華大學
系所名稱:工程科學博士學位學程
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:英文
論文頁數:146
中文關鍵詞:微弧氧化法鋁合金6061紅外線放射率鹼金屬矽酸鹽電解液
外文關鍵詞:Microarc oxidation; aluminium 6061 alloy; IR emissivity; alkaline silicate electrolyte
相關次數:
  • 被引用被引用:1
  • 點閱點閱:589
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:64
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
高放射率的表面有利於增進加熱及冷卻系統之熱效能,本研究致力於微弧氧化法增進鋁合金之表面放射率。我們以不同製程參數生成微弧氧化氧化鋁陶瓷膜層,探討關鍵參數對低溫時紅外線放射率之影響並獲致以下結論:
一、 通常鋁合金經過微弧氧化處理後,紅外線放射率在波長範圍4~16µm都可獲提升。
二、 紅外線放射率曲線有兩個主要的區域:半穿透區4.0~7.6µm及不透明區8.5~16.0µm。
三、 隨著微弧氧化製程時間的增加(10 min~60 min),僅有輕微的增加紅外線波段的放射率。
四、 微弧氧化鋁膜層之表面粗糙度與火山口結構的表面積比,呈線性關係。
五、 微弧氧化過程中電壓-時間和電流-時間之間的變化可分為三個階段,影響了陶瓷膜層成長機制及其特性。
六、 我們首次根據光譜行為將紅外線放射率曲線區分為好幾個區段,並應用多重線性回歸法找出影響紅外線放射率有效的因子。
七、 對於脈衝週期和微弧氧化膜層厚度之間的關係建立起新的理論模式,藉由示意圖描述脈衝週期對於膜層厚度之影響。
八、 增加電流密度有利於在半透明區段稍微增加紅外線放射率,但在不透明區段並無顯著的改變。
九、 電解液溫度從12.3℃上升到90.5℃會顯著改變微弧氧化膜層的性質。低溫微弧氧化膜層較厚,具有火山口結構與散佈微細矽酸鋁及氧化矽顆粒;高溫時微弧氧化膜層較薄,轉變為較粗糙的表面結構,散佈著球狀的中空凸起結構,呈現更高的空孔密度及較多的矽酸鋁及氧化矽相,它們有利於增加紅外線放射率及加寬不透明區域的範圍。


ABSTRACT
The high emitter surfaces enhance the thermal performance of heating and cooling systems and consequently reduce the needed energy. This study devoted to the enhancement of emissivity of 6061 aluminum alloy by microarc oxidation process (MAO). We investigated the impact parameters on the low temperature IR emissivity of MAO alumina ceramic prepared at different conditions and we found that:
- In general, the MAO enhanced the IR emissivity at the whole studied wavelength range (4-16 µm).
- The curve of IR emissivity has two major regions: semitransparent. 4.0- 7.6 µm, and opaque region: 8.5- 16.0 µm.
- The increment of processing time from 10 min to 60 min slightly enhanced the IR emissivity at the whole studied region.
- A linear correlation was found between the surface roughness and the area ratio of the volcano-like microstructure.
- Both curves of voltage-time and current-time have three stages correlated with the growth of MAO ceramic layer and its properties.
- For the first time, the curve of IR emissivity was analyzed by dividing it into several regions according to spectra behavior and applying the multiple linear regression (MLR) to find out the effective factors.
- A new model was introduced to describe the relationship between bipolar pulsing periods (BPP) and the MAO layer thickness. Also, this model was described by contours at different levels to show up the influence of variation of BPP’s on the layer thickness.
- The current density slightly enhanced the IR emissivity in the semitransparent region, but did not achieve a significant change in the opaque region.
- The increment of electrolyte temperature from 12.3 °C to 90.5 °C significantly changed the MAO ceramic properties from thick layer with surface microstructure of volcano-like and accumulated particles to a thin layer which has rougher surfaces covered by grainy spherical hollow bulges microstructures with more pore density and more sillimanite and cristobalite phases which enhanced the IR emissivity and widened the opaque region.
Keywords: Microarc oxidation; aluminium 6061 alloy; IR emissivity; alkaline silicate electrolyte

Table of contents
Preface .................................................................................................................................... ii
摘 要 ....................................................................................................................................... iii
ABSTRACT ............................................................................................................................... iv
DEDICATION ............................................................................................................................ vi
Acknowledgements ................................................................................................................ vii
Table of contents................................................................................................................... viii
Table of Figures ....................................................................................................................... xi
Tables ................................................................................................................................... xiv
Abbreviations ......................................................................................................................... xv
1. Introduction ........................................................................................................................ 1
Structure of the thesis ............................................................................................................. 2
2. Microarc Oxidation .............................................................................................................. 4
2.1. History ......................................................................................................................... 4
2.2. The effecting parameters on the MAO coating .......................................................... 8
2.3. The characteristics of MAO treatment...................................................................... 13
2.4. Study of the MAO process ........................................................................................ 14
2.5. Previous thermal radiators of MAO coatings ............................................................ 16
3. Methodology ..................................................................................................................... 19
3.1. Al 6061 alloy .............................................................................................................. 19
3.2. Preparing of samples prior to the MAO treatment................................................... 20
3.3. MAO process ............................................................................................................. 21
The liquid bath .................................................................................................................. 21
Current mode .................................................................................................................... 22
The electrolyte .................................................................................................................. 23
3.4. Preparing MAO treated samples for other related tests .......................................... 26
Cutting ............................................................................................................................... 27
Cross section ..................................................................................................................... 27
Cleaning ............................................................................................................................. 27
3.5. Study of coating properties ....................................................................................... 28
XRD and EDX studies ......................................................................................................... 28
SEM micrographs .............................................................................................................. 28
Surface roughness and layer thickness ............................................................................. 30
Infrared emissivity ............................................................................................................. 30
4. The Effect of MAO Processing Time .................................................................................. 33
4.1 Abstract ........................................................................................................................... 33
4.2 Introduction .................................................................................................................... 33
4.3 Experimental ................................................................................................................... 34
4.4 Results and discussions ................................................................................................... 36
4.4.1 Current and voltage characteristics during MAO process ....................................... 36
4.4.2 Dependence of coating thickness on MAO processing time ................................... 38
4.4.3 Surface morphology ................................................................................................. 39
4.4.4 Roughness ................................................................................................................ 43
4.4.5 Compositions and phases ......................................................................................... 45
4.4.6 The infrared emissivity properties ........................................................................... 49
4.5 Conclusions ..................................................................................................................... 53
5. Effects of Anodic Current Density ..................................................................................... 56
5.1 Abstract ........................................................................................................................... 56
5.2 Introduction .................................................................................................................... 57
5.3 Experimental ................................................................................................................... 58
5.4 Results ............................................................................................................................. 62
5.5 Discussions ...................................................................................................................... 70
5.6 Conclusions ..................................................................................................................... 73
6. Effects of MAO Electrolyte Temperatures ........................................................................ 75
6.1 Abstract ........................................................................................................................... 75
6.2 Introduction .................................................................................................................... 75
6.3 Experimental ................................................................................................................... 76
6.4 Results ............................................................................................................................. 78
6.4.1 Surface Morphology ................................................................................................. 78
6.4.2 Coating Thickness and Roughness ........................................................................... 79
6.4.3 Compositions and phase compositions .................................................................... 81
6.4.4 Infrared Emissivity .................................................................................................... 83
6.5 Discussions ...................................................................................................................... 85
6.5.1 Influence of Electrolyte Temperature on the Coating Microstructures and
Compositions ..................................................................................................................... 85
6.5.2 Coating Thickness and Roughness ........................................................................... 86
6.5.3 The Infrared Emissivity ............................................................................................. 87
6.6 Conclusions ..................................................................................................................... 90
7. The effects of bipolar pulsing periods ............................................................................... 92
Abstract ................................................................................................................................ 92
7.1. Introduction .............................................................................................................. 92
7.2. Experimental ............................................................................................................. 95
7.3. Results ....................................................................................................................... 97
7.3.1. MAO coating properties .......................................................................................... 97
7.3.2. Coating Thickness and Roughness .......................................................................... 98
7.3.3. Compositions and phases...................................................................................... 103
7.3.4. IR emissivity ........................................................................................................... 107
7.4. Suggested Mechanism of MAO ceramic growth and surface properties during the
bipolar pulsing periods ........................................................................................................ 109
7.4.1. Preface .................................................................................................................. 109
7.4.2. The suggested mechanism .................................................................................... 110
7.5. Discussions ................................................................................................................... 116
7.6. Conclusions .................................................................................................................. 122
References ........................................................................................................................... 124
Table of Figures
Figure 2-1: The copper substrate coated with alumina. (a) this sample was dipped into the electrolyte
gradually to the mid. If the dipping area was increased, the MAO stopped. (b) and (c) These copper
substrates were pre-coated by the SiO2 sol-gel and baked in a 200 °C for 30 min, then treated by MAO
aluminate electrolyte. The MAO coating found to be weak adhesion to the substrate and easy to be
scratch by nale to clearify the substrate. __________________________________________________ 9
Figure 2-2: Voltage time response in MAO process _________________________________________ 14
Figure 2-3: Sundarajan and Krishna suggested mechanism __________________________________ 15
Figure 3-1: No significant different between polished and saw-cut surfaces before MAO treatment __ 20
Figure 3-2: Samples are mounted to a clamp of the same aluminium alloy 6061. _________________ 21
Figure 3-3:Used refrigeration bath circulators(TIT BL-20L) ___________________________________ 21
Figure 3-4: SPIK 2000A generates different current modes ___________________________________ 22
Figure 3-5: A schematic of the arrangement of power supplies and the pulse generator SPIK 2000A, in
addition to the polarity of alternating electrodes according to the bipolar output pulse. ___________ 23
Figure 3-6: Deducting 1 x 1 cm2 from the center of pieces by a machine cutter (left) followed by
manually cutting (right) ______________________________________________________________ 27
Figure 3-7: a) The volcano-like microstructure in a micrograph, b) The estimated area ratio using Image-
Pro Plus 7.0 software, the desired area was identified according to its distinguishable color/s ______ 28
Figure 3-8: Hitachi S4160 & S4200 SEM in lab M105, mechanical engineering department, Chung Hua
university. _________________________________________________________________________ 29
Figure 3-9: Eddy-current coating-thickness tester (ElectroPhysik, minitest 730, sensor F.N. 1.5) _____ 30
Figure 3-10: Mitutoyo, SJ310 surface roughness tester ______________________________________ 30
Figure 3-11: (a) IR camera (G100EX), (b) sample temperature controlling system, and (c) the IR image
taken by the IR camera _______________________________________________________________ 30
Figure 3-12: (a)Inside an insulating chamber, the heating and cooling system maintain the sample
temperature at 70 °C, then the radiated IR waves is guided by wave guide into the spectrometer (b)
FTLA2000 analyzes the radiance of different wavelengths by comparing it with the reference blackbody
radiations, (c) the temperature controlling system (left) and the screen of linked computer to analyze
the data (right), (d) a snapshot from the screen is showing the IR emissivity curve and the calculated
mean emissivity _____________________________________________________________________ 31
Figure 3-13: A comparison between the measured emissivity by IR camera and the FTIR spectrometer
(8-14 μm). The maximum variation is 5%. ________________________________________________ 32
Figure 4-1: Effect of MAO processing time on the electrical voltages and currents ________________ 36
Figure 4-2: The coating thickness as a function of processing time ____________________________ 38
Figure 4-3: An SEM micrograph of the top ceramic coating surface after 60 min of MAO treatment on Al
6061 substrate, includes: (a) a crater, (b) a resolidified pool, (c) a localized microcrack and (d)
accumulated particles ________________________________________________________________ 39
Figure 4-4: A cross- sectional morphology of the ceramic coating shows the: (1) outer surface, (2) inner
layer, (3) microcrack; the volcano-like: (4) crater, (5) internal cavity, (6) outer wall, and (7) inner wall 40
Figure 4-5: SEM micrographs for ceramic coatings on aluminium, at various MAO processing durations:
(a) 10 min; (b) 20 min; (c) 30 min; (d) 40 min; (e) 50 min; and (f) 60 min. _______________________ 41
Figure 4-6: The Volcano-like population density and its area ratio as functions in MAO processing time
__________________________________________________________________________________ 42
Figure 4-7: The influence of MAO processing time on ceramic coating roughness ________________ 43
Figure 4-8: Linear correlation between the volcano-like area ratio and the roughness Ra __________ 44
Figure 4-9: The method of taking the EDX study points over: (A) a crater, (B) a resolidified pool, (C)
accumulated particles, and (D) a spheroid ________________________________________________ 45
Figure 4-10: XRD patterns for the surfaces of ceramic coatings by MAO treatment in various durations
__________________________________________________________________________________ 46
Figure 4-11: Variation of phase weight percentages (wt%) for ceramic surfaces prepared by different
MAO processing times, calculated by MATCH! software _____________________________________ 47
Figure 4-12: The spectral emissivities at 70° C for ceramic coating surfaces prepared by different MAO
processing times, and an untreated- saw cut Al 6061 substrate _______________________________ 49
Figure 5-1: Two SEM micrographs for same sample after MAO treatment by: (a) a month, and (b) a six
months ____________________________________________________________________________ 59
Figure 5-2: XRD patterns of a sample after the MAO treatment by: (a) a month and (b) six months. The
arrows are pointing to the cristobalite peak, which decreased significantly after six months of storage.
__________________________________________________________________________________ 60
Figure 5-3: The effect of anodic biasing current density on the: (a) thickness and (b) surface roughness
of the MAO ceramic coating ___________________________________________________________ 61
Figure 5-4: The linear correlation between the MAO ceramic thickness and surface roughness ______ 62
Figure 5-5: The main microstructures in the SEM micrographs are: (a) re-solidified pools, (b) craters, (c)
accumulated particles, and (d) microcracks _______________________________________________ 63
Figure 5-6: Surface morphologies of MAO ceramic coatings prepared at different anodic biasing current
densities: a) 10.94 A/dm2, b) 14.58 A/dm2 , c) 21.88 A/dm2 and d) 43.75 A/dm2. _________________ 64
Figure 5-7: The effect of anodic current density on the relatively occupied area by volcano-like
microstructures _____________________________________________________________________ 65
Figure 5-8: The inverse proportional of volcano-like density with the anodic current density _______ 66
Figure 5-9: The results of the EDX analysis at several locations on the MAO ceramic surfaces prepared
at different anodic current densities: (a) 10.94, (b) 14.58 , (c) 21.88, and (d) 43.75 A/dm2 . _________ 67
Figure 5-10: XRD spectra for MAO alumina ceramic coatings prepared at different anodic current
densities. The apparent peaks are for aluminium, which minimize the appeared intensities for other
phases and compositions _____________________________________________________________ 68
Figure 5-11: Effect of anodic current density on the MAO ceramic: (a) alumina phases, and (b)
sillimanite and cristobalite phases.______________________________________________________ 69
Figure 5-12: IR spectral emissivity of the MAO ceramic surfaces prepared at different anodic current
densities ___________________________________________________________________________ 70
Figure 6-1: SEM micrographs of selected samples prepared at different electrolyte temperatures. At low
temperatures (12.3-45.9°C), the volcano-like and accumulated particles were easily distinguishable. The
accumulated particles covered more area as the temperature increased (50.5-64.2°C). At higher
temperatures, the accumulated particles disappeared and the number of pores increased significantly
(67.2-90.5°C). _______________________________________________________________________ 78
Figure 6-2: The influence of the MAO electrolyte temperature on: a) surface pore density and b)
porosity. ___________________________________________________________________________ 79
Figure 6-3: The effect of electrolyte temperature on the MAO ceramic (a) thickness and (b) properties 80
Figure 6-4: The results of the EDX analysis at several locations on the MAO ceramic surfaces prepared in
different electrolyte temperatures:(a) 12.3°C, (b) 27.0°C, (c) 50.5°C, (d) 67.2°C and (e) 90.5°C. ______ 81
Figure 6-5: XRD patterns and its related phases and compositions for MAO ceramic surfaces prepared in
different electrolyte temperatures. Minor phases are not shown ______________________________ 82
Figure 6-6: The weight percentage of the major phases in the ceramic layers prepared in various
electrolyte temperatures ______________________________________________________________ 82
Figure 6-7: The IR emissivity of MAO ceramic coatings prepared in different electrolyte temperatures 83
Figure 6-8: The relationship between the density of pores and MAO ceramic thickness ____________ 85
Figure 7-1: The polarity of the sample and the plate during bipolar pulses. ______________________ 94
Figure 7-2: The effect of anodic period aon on the MAO ceramic surface microstructures and layer
thickness. Bipolar periods in μs, Duty cycle (%) and both of layer thickness (h) and surface roughness
(Ra) in μm. _________________________________________________________________________ 94
Figure 7-3: The effect of anodic neutral period aoff on the MAO ceramic surface microstructures and
layer thickness. Bipolar periods in μs, Duty cycle (%) and both of layer thickness (h) and surface
roughness (Ra) in μm. ________________________________________________________________ 95
Figure 7-4: The effect of cathodic period con on the MAO ceramic surface microstructures and layer
thickness. Bipolar periods in μs, Duty cycle (%) and both of layer thickness (h) and surface roughness
(Ra) in μm. _________________________________________________________________________ 96
Figure 7-5: The effect of cathodic neutral period coff on the MAO ceramic surface microstructures and
layer thickness. Bipolar periods in μs, Duty cycle (%) and both of layer thickness (h) and surface
roughness (Ra) in μm. ________________________________________________________________ 97
Figure 7-6: The effect of Duty cycle on the layer thickness ___________________________________ 98
Figure 7-7: The relation between the ceramic layer thickness and surface roughness _____________ 99
Figure 7-8: Duty cycle, layer thickness and surface roughness diagrams at different levels of neutral
periods. The layers were built in 10 min of treatment at alkaline silicate electrolyte with an average
temperature of 20±4°C ______________________________________________________________ 100
Figure 7-9: EDX analysis of the (a) surface and (b) cross section, show the concentrations of Al, O, and Si
at different study points _____________________________________________________________ 103
Figure 7-10: EDX mapping of the surface and cross section. The dashed line is used to identify the
boundaries of the ceramic layer. ______________________________________________________ 103
Figure 7-11: The XRD spectra and phases weight percentages for samples prepared at different anodic
periods, aon. The bipolar periods in μs, Duty cycle (%) and layer thickness, h, in μm. ______________ 104
Figure 7-12: The XRD spectra and phases weight percentages for samples prepared at different
cathodic periods, con. The bipolar periods in μs, Duty cycle (%) and layer thickness, h, in μm. ______ 105
Figure 7-13: The XRD spectra and phases weight percentages for samples prepared at different anodic
neutral periods, aoff. The bipolar periods in μs, Duty cycle (%) and layer thickness, h, in μm. _______ 105
Figure 7-14: The XRD spectra and phases weight percentages for samples prepared at different
cathodic neutral periods, coff. The bipolar periods in μs, Duty cycle (%) and layer thickness, h, in μm. 106
Figure 7-15: Spectra of IR emissivity of different samples prepared at different bipolar pulsing periods
(aon,aoff,con,coff) μs __________________________________________________________________ 107
Figure 7-16: aon-con diagrams of LWIR emissivity at different levels of aoff and coff _______________ 108
Figure 7-17: (a) and (b): the aon attracts anionic etchers into the internal channels and weak points, (c)
continuing internal etching during aoff ,(d) con will repel anionic etchers away from the sample and
produce hydrogen by cathodic water electrolysis, (e) during coff , the accumulated hydrogen bubbles
prevent etchers to enter the weak points and channels, and (g) the next aon ionize the electrolyte and
gaseous bubbles and ignites plasma in the closet available weak points and channels ___________ 112
Tables
Table 2-1: Romig used different electrolyte compositions to fabricate different coatings [90] ................. 4
Table 2-2: Alumina and magnesia coatings by Frasch electrolytes[91] ..................................................... 5
Table 2-3: Dwyer used MAO to enhance the emissivity in 1955 ................................................................ 5
Table 2-4: McNeill and Gruss fabricated different coatings on different metal substrates ....................... 6
Table 2-5: Results of some patents in 1970s and 1980s............................................................................. 7
Table 2-6: Effect of chemical compounds on the coating properties ....................................................... 11
Table 3-1: A properties comparison between some metals [174,175] ..................................................... 19
Table 3-2: Properties of SPIK 2000A ........................................................................................................ 22
Table 4-1: Local EDX qualitative analysis of the surface microstructures (Figure 4-9) ............................. 46
Table 4-2: The multiple linear regression (MLR) models for each region of the studied emissvity spectra,
shows the coefficient of varibales and its contributon to the model (β), in addition to the strength of
each model. (Confidence interval, CI = 95%) ............................................................................................ 51
Table 4-3: Emissivity averages for MAO treated samples at various processing times and an untreatedsaw
cut Al 6061 surface ........................................................................................................................... 53
Table 6-1: The average of LWIR emissivities for MAO ceramics prepared in various electrolyte
temperatures ........................................................................................................................................... 84
Table 6-2: Results of multiple linear regression analysis of the effecting variables on the emissivity
averages in different regions of the IR spectra ........................................................................................ 88

References
[1] A.K.A. Shati, S.G. Blakey, S.B.M. Beck, The effect of surface roughness and
emissivity on radiator output, Energy Build. 43 (2011) 400–406.
[2] S.-H. Yu, D. Jang, K.-S. Lee, Effect of radiation in a radial heat sink under
natural convection, Int. J. Heat Mass Transf. 55 (2012) 505–509.
[3] F. Mécuson, T. Czerwiec, T. Belmonte, L. Dujardin, A. Viola, G. Henrion,
Diagnostics of an electrolytic microarc process for aluminium alloy oxidation,
Surf. Coatings Technol. (2005) 804–808.
[4] S. Stojadinovic, R. Vasilic, I. Belca, M. Petkovic, B. Kasalica, Z. Nedic, et al.,
Characterization of the plasma electrolytic oxidation of aluminium in sodium
tungstate, Corros. Sci. 52 (2010) 3258–3265.
[5] Z. Wang, L. Wu, Y. Qi, W. Cai, Z. Jiang, Self-lubricating Al2O3/PTFE
composite coating formation on surface of aluminium alloy, Surf. Coat.
Technol. 204 (2010) 3315–3318.
[6] R.H.U. Khan, A. Yerokhin, X. Li, H. Dong, A. Matthews, Surface
characterisation of DC plasma electrolytic oxidation treated 6082 aluminium
alloy: Effect of current density and electrolyte concentration, Surf. Coat.
Technol. 205 (2010) 1679–1688.
[7] L.O. Snizhko, A.L. Yerokhin, A. Pilkington, N.L. Gurevina, D.O. Misnyankin,
A. Leyland, et al., Anodic processes in plasma electrolytic oxidation of
aluminium in alkaline solutions, Electrochim. Acta. 49 (2004) 2085–2095.
[8] S.M. Moon, S.I. Pyun, The corrosion of pure aluminium during cathodic
polarization in aqueous solutions, Corros. Sci. 39 (1997) 399–408.
[9] L. Wen, Y. Wang, Y. Zhou, J.-H. Ouyang, L. Guo, D. Jia, Corrosion evaluation
of microarc oxidation coatings formed on 2024 aluminium alloy, Corros. Sci. 52
(2010) 2687–2696.
[10] J. Morlidge, P. Skeldon, G. Thompson, Gel formation and the efficiency of
anodic film growth on aluminium, Electrochim. Acta. 44 (1999) 2423–2435.
[11] P.I. Butyagin, Y.V. Khokhryakov, A.I. Mamaev, Microplasma systems for
creating coatings on aluminium alloys, Mater. Lett. 57 (2003) 1748–1751.
[12] J. Jovović, S. Stojadinović, N.M. Šišović, N. Konjević, Spectroscopic
characterization of plasma during electrolytic oxidation (PEO) of aluminium,
Surf. Coat. Technol. 206 (2011) 24–28.
[13] A.L. Yerokhin, L.O. Snizhko, N.L. Gurevina, A. Leyland, A. Pilkington, A.
Matthews, et al., Spatial characteristics of discharge phenomena in plasma
electrolytic oxidation of aluminium alloy, Surf. Coat. Technol. 177-178 (2004)
779–783.
[14] T. Abdulla, A. Yerokhin, R. Goodall, Effect of Plasma Electrolytic Oxidation
coating on the specific strength of open-cell aluminium foams, Mater. Des. 32
(2011) 3742–3749.
[15] A.L. AL Yerokhin, A.A.A. Voevodin, V.V. Lyubimov, J. Zabinski, M. Donley,
Plasma electrolytic fabrication of oxide ceramic surface layers for tribotechnical
purposes on aluminium alloys, Surf. Coatings Technol. 110 (1998) 140–146.
[16] E. Matykina, R. Arrabal, P. Skeldon, G.E. Thompson, P. Belenguer, AC PEO of
aluminium with porous alumina precursor film, Surf. Coat. Technol. 205 (2010)
1668–1678.
[17] S. V Gnedenkov, O.A. Khrisanfova, A.G. Zavidnaya, S.L. Sinebrukhov, A.N.
Kovryanov, T.M. Scorobogatova, et al., Production of hard and heat-resistant
coatings on aluminium using a plasma micro-discharge, Surf. Coatings Technol.
123 (2000) 24–28.
[18] M. Treviño, N.F. Garza-Montes-de-Oca, A. Pérez, M.A.L. Hernández-
Rodríguez, A. Juárez, R. Colás, Wear of an aluminium alloy coated by plasma
electrolytic oxidation, Surf. Coat. Technol. (2012) 2213–2219.
[19] T.S. Lim, H.S. Ryu, S.-H. Hong, Electrochemical corrosion properties of CeO2-
containing coatings on AZ31 magnesium alloys prepared by plasma electrolytic
oxidation, Corros. Sci. 62 (2012) 104–111.
[20] A.V.A. Timoshenko, Y.Y.V. Magurova, Investigation of plasma electrolytic
oxidation processes of magnesium alloy MA2-1 under pulse polarisation modes,
Surf. Coatings Technol. 199 (2005) 135–140.
[21] J. Liang, P.B. Srinivasan, C. Blawert, W. Dietzel, Comparison of
electrochemical corrosion behaviour of MgO and ZrO2 coatings on AM50
magnesium alloy formed by plasma electrolytic oxidation, Corros. Sci. 51
(2009) 2483–2492.
[22] F. Liu, D.D. SHAN, Y.Y. Song, E.-H. HAN, W. Ke, Formation process of
composite plasma electrolytic oxidation coating containing zirconium oxides on
AM50 magnesium alloy, Corros. Sci. 53 (2011) 3845–3852.
[23] G.G.-H. Lv, H. Chen, L. Li, E.E.-W. Niu, H. Pang, B. Zou, et al., Investigation
of plasma electrolytic oxidation process on AZ91D magnesium alloy, Curr.
Appl. Phys. 9 (2009) 126–130.
[24] P.B. Srinivasan, R. Zettler, C. Blawert, W. Dietzel, A study on the effect of
plasma electrolytic oxidation on the stress corrosion cracking behaviour of a
wrought AZ61 magnesium alloy and its friction stir weldment, Mater. Charact.
60 (2009) 389–396.
[25] P. Zhang, X. Nie, H. Hu, Y. Liu, TEM analysis and tribological properties of
Plasma Electrolytic Oxidation (PEO) coatings on a magnesium engine AJ62
alloy, Surf. Coat. Technol. 205 (2010) 1508–1514.
[26] F. Liu, D. Shan, Y. Song, E.-H. Han, Effect of additives on the properties of
plasma electrolytic oxidation coatings formed on AM50 magnesium alloy in
electrolytes containing K2ZrF6, Surf. Coat. Technol. (2011) 455–463.
[27] P. WANG, J. LI, Y. GUO, Z. YANG, Growth process and corrosion resistance
of ceramic coatings of micro-arc oxidation on Mg-Gd-Y magnesium alloys, J.
Rare Earths. 28 (2010) 798–802.
[28] J. Liang, L. Hu, J. Hao, Characterization of microarc oxidation coatings formed
on AM60B magnesium alloy in silicate and phosphate electrolytes, Appl. Surf.
Sci. 253 (2007) 4490–4496.
[29] F. Jin, P.K. Chu, G. Xu, J. Zhao, D. Tang, H. Tong, Structure and mechanical
properties of magnesium alloy treated by micro-arc discharge oxidation using
direct current and high-frequency bipolar pulsing modes, Mater. Sci. Eng. A.
435-436 (2006) 123–126.
[30] K.R. Shin, Y.G. Ko, D.H. Shin, Effect of electrolyte on surface properties of
pure titanium coated by plasma electrolytic oxidation, J. Alloys Compd. (2011)
S478–S481.
[31] X. Wang, X. Pan, W. Ye, Y. Wei, Y. Chen, Preparation and properties of
TiCxN1 − x coatings containing calcium on titanium surface by plasma
electrolytic carbonitriding, Surf. Coat. Technol. (2012).
[32] D. Wei, Y. Zhou, Y. Wang, D. Jia, Characteristic of microarc oxidized coatings
on titanium alloy formed in electrolytes containing chelate complex and nano-
HA, Appl. Surf. Sci. 253 (2007) 5045–5050.
[33] W. Zhang, K. Du, C. Yan, F. Wang, Preparation and characterization of a novel
Si-incorporated ceramic film on pure titanium by plasma electrolytic oxidation,
Appl. Surf. Sci. 254 (2008) 5216–5223.
[34] K.R. Shin, Y.G. Ko, D.H. Shin, Surface characteristics of ZrO2-containing
oxide layer in titanium by plasma electrolytic oxidation in K4P2O7 electrolyte,
J. Alloys Compd. (2012) S226–S230.
[35] Y.M. Wang, L.X. Guo, J.H. Ouyang, Y. Zhou, D.C. Jia, Interface adhesion
properties of functional coatings on titanium alloy formed by microarc oxidation
method, Appl. Surf. Sci. 255 (2009) 6875–6880.
[36] P. Huang, K.-W. Xu, Y. Han, Preparation and apatite layer formation of plasma
electrolytic oxidation film on titanium for biomedical application, Mater. Lett.
(2005) 185–189.
[37] Y. Wang, T. Lei, L. Guo, B. Jiang, Fretting wear behaviour of microarc
oxidation coatings formed on titanium alloy against steel in unlubrication and
oil lubrication, Appl. Surf. Sci. 252 (2006) 8113–8120.
[38] S. Stojadinović, R. Vasilić, M. Petković, L. Zeković, Plasma electrolytic
oxidation of titanium in heteropolytungstate acids, Surf. Coat. Technol. (2011)
575–581.
[39] H. Tang, Q. Sun, T. Xin, C. Yi, Z. Jiang, F. Wang, Influence of Co(CH3COO)2
concentration on thermal emissivity of coatings formed on titanium alloy by
micro-arc oxidation, Curr. Appl. Phys. 12 (2012) 284–290.
[40] S. Cui, J. Han, Y. Du, W. Li, Corrosion resistance and wear resistance of plasma
electrolytic oxidation coatings on metal matrix composites, Surf. Coatings
Technol. (2007) 5306–5309.
[41] G. Rapheal, S. Kumar, C. Blawert, N.B. Dahotre, Wear behavior of plasma
electrolytic oxidation (PEO) and hybrid coatings of PEO and laser on MRI
230D magnesium alloy, Wear. (2011) 1987–1997.
[42] X. Nie, E.I. Meletis, J.C. Jiang, A. Leyland, A.L. Yerokhin, A. Matthews,
Abrasive wear/corrosion properties and TEM analysis of Al 2 O 3 coatings
fabricated using plasma electrolysis, Surf. Coatings Technol. 149 (2002) 245–
251.
[43] Y. Jiang, Y. Zhang, Y. Bao, K. Yang, Sliding wear behaviour of plasma
electrolytic oxidation coating on pure aluminium, Wear. 271 (2011) 1667–1670.
[44] M. Aliofkhazraei, A.S. Rouhaghdam, T. Shahrabi, Abrasive wear behaviour of
Si3N4/TiO2 nanocomposite coatings fabricated by plasma electrolytic
oxidation, Surf. Coat. Technol. (2010) S41–S46.
[45] T. Wei, F. Yan, J. Tian, Characterization and wear- and corrosion-resistance of
microarc oxidation ceramic coatings on aluminum alloy, J. Alloys Compd. 389
(2005) 169–176.
[46] L. Wang, J. Zhou, J. Liang, J. Chen, Microstructure and corrosion behavior of
plasma electrolytic oxidation coated magnesium alloy pre-treated by laser
surface melting, Surf. Coat. Technol. 206 (2011) 3109–3115.
[47] P. Su, X. Wu, Y. Guo, Z. Jiang, Effects of cathode current density on structure
and corrosion resistance of plasma electrolytic oxidation coatings formed on
ZK60 Mg alloy, J. Alloys Compd. (2009) 773–777.
[48] R.O. Hussein, D.O. Northwood, X. Nie, The influence of pulse timing and
current mode on the microstructure and corrosion behaviour of a plasma
electrolytic oxidation (PEO) coated AM60B magnesium alloy, J. Alloys Compd.
(2012) 41–48.
[49] L.R. Krishna, G. Poshal, G. Sundararajan, Influence of electrolyte chemistry on
morphology and corrosion resistance of micro arc oxidation coatings deposited
on magnesium, Metall. Mater. Trans. A. 41A (2010) 3499–3508.
[50] J. Liang, L. Hu, J. Hao, Improvement of corrosion properties of microarc
oxidation coating on magnesium alloy by optimizing current density parameters,
Appl. Surf. Sci. 253 (2007) 6939–6945.
[51] C. Blawert, V. Heitmann, W. Dietzel, H.M. Nykyforchyn, M.D. Klapkiv,
Influence of electrolyte on corrosion properties of plasma electrolytic
conversion coated magnesium alloys, Surf. Coatings Technol. 201 (2007) 8709–
8714.
[52] D.Y. Hwang, Y.M. Kim, D.-Y. Park, B. Yoo, D.H. Shin, Corrosion resistance of
oxide layers formed on AZ91 Mg alloy in KMnO4 electrolyte by plasma
electrolytic oxidation, Electrochim. Acta. 54 (2009) 5479–5485.
[53] Y.M. Wang, B.L. Jiang, T.Q. Lei, L.X. Guo, Microarc oxidation coatings
formed on Ti6Al4V in Na2SiO3 system solution: Microstructure, mechanical
and tribological properties, Surf. Coatings Technol. 201 (2006) 82–89.
[54] J. Liang, B. Guo, J. Tian, H. Liu, J. Zhou, T. Xu, Effect of potassium fluoride in
electrolytic solution on the structure and properties of microarc oxidation
coatings on magnesium alloy, Appl. Surf. Sci. 252 (2005) 345–351.
[55] Y. Guangliang, L. Xianyi, B. Yizhen, The effects of current density on the phase
composition and microstructure properties of micro-arc oxidation coating, J.
Alloys Compd. 345 (2002) 196–200.
[56] C.-C. Tseng, J.-L. Lee, T.-H. Kuo, S.-N. Kuo, K.-H. Tseng, The influence of
sodium tungstate concentration and anodizing conditions on microarc oxidation
(MAO) coatings for aluminum alloy, Surf. Coat. Technol. 206 (2012) 3437–
3443.
[57] H.J. Robinson, A.E. Markaki, C.A. Collier, T.W. Clyne, Cell adhesion to
plasma electrolytic oxidation (PEO) titania coatings, assessed using a
centrifuging technique, J. Mech. Behav. Biomed. Mater. 4 (2011) 2103–2112.
[58] S. V Gnedenkov, O.A. Khrisanfova, A.G. Zavidnaya, S.L. Sinebrukhov, P.S.
Gordienko, S. Iwatsubo, et al., Composition and adhesion of protective coatings
on aluminum, Surf. Coatings Technol. 145 (2001) 146–151.
[59] K. Ramachandran, Microstructure, adhesion, microhardness, abrasive wear
resistance and electrical resistivity of the plasma sprayed alumina and alumina–
titania coatings, Thin Solid Films. 315 (1998) 144–152.
[60] Y. Wang, Z. Jiang, Z. Yao, Microstructure, bonding strength and thermal shock
resistance of ceramic coatings on steels prepared by plasma electrolytic
oxidation, Appl. Surf. Sci. 256 (2009) 650–656.
[61] Y. Xu, Z. Yao, F. Jia, Y. Wang, Z. Jiang, H. Bu, Preparation of PEO ceramic
coating on Ti alloy and its high temperature oxidation resistance, Curr. Appl.
Phys. 10 (2010) 698–702.
[62] Y. Wang, Z. Jiang, Z. Yao, Formation of titania composite coatings on carbon
steel by plasma electrolytic oxidation, Appl. Surf. Sci. 256 (2010) 5818–5823.
[63] J. Ding, J. Liang, L. Hu, J. HAO, Q. Xue, Effects of sodium tungstate on
characteristics of microarc oxidation coatings formed on magnesium alloy in
silicate-KOH electrolyte, Trans. Nonferrous Met. Soc. China. 17 (2007) 244–
249.
[64] M. Tang, H. Liu, W. Li, L. Zhu, Effect of zirconia sol in electrolyte on the
characteristics of microarc oxidation coating on AZ91D magnesium, Mater.
Lett. 65 (2011) 413–415.
[65] Q. Cai, L. Wang, B. Wei, Q. Liu, Electrochemical performance of microarc
oxidation films formed on AZ91D magnesium alloy in silicate and phosphate
electrolytes, Surf. Coatings Technol. 200 (2006) 3727–3733.
[66] C.-E. Barchiche, E. Rocca, J. Hazan, Corrosion behaviour of Sn-containing
oxide layer on AZ91D alloy formed by plasma electrolytic oxidation, Surf.
Coatings Technol. 202 (2008) 4145–4152.
[67] W. Li, M. Tang, L. Zhu, H. Liu, Preparation Al2O3/ZrO2 composite coating in
an alkaline phosphate electrolyte containing K2ZrF6 on aluminum alloy by
microarc oxidation, Appl. Surf. Sci. 258 (2012) 5869–5875.
[68] M. Tang, W. Li, H. Liu, L. Zhu, Influence of titania sol in the electrolyte on
characteristics of the microarc oxidation coating formed on 2A70 aluminum
alloy, Surf. Coat. Technol. 205 (2011) 4135–4140.
[69] E. Matykina, R. Arrabal, P. Skeldon, G.E. Thompson, Investigation of the
growth processes of coatings formed by AC plasma electrolytic oxidation of
aluminium, Electrochim. Acta. 54 (2009) 6767–6778.
[70] V. Raj, M. Mubarak Ali, M.M. Ali, Formation of ceramic alumina
nanocomposite coatings on aluminium for enhanced corrosion resistance, J.
Mater. Process. Technol. 209 (2009) 5341–5352.
[71] C.S. Dunleavy, J.A. Curran, T.W. Clyne, Self-similar scaling of discharge
events through PEO coatings on aluminium, Surf. Coat. Technol. 206 (2011)
1051–1061.
[72] M. Montazeri, C. Dehghanian, M. Shokouhfar, A. Baradaran, Investigation of
the voltage and time effects on the formation of hydroxyapatite-containing
titania prepared by plasma electrolytic oxidation on Ti–6Al–4V alloy and its
corrosion behavior, Appl. Surf. Sci. 257 (2011) 7268–7275.
[73] W. Xue, Q. Zhu, Q. Jin, M. Hua, Characterization of ceramic coatings fabricated
on zirconium alloy by plasma electrolytic oxidation in silicate electrolyte,
Mater. Chem. Phys. 120 (2010) 656–660.
[74] J. Li, H. Cai, X. Xue, B. Jiang, The outward–inward growth behavior of
microarc oxidation coatings in phosphate and silicate solution, Mater. Lett. 64
(2010) 2102–2104.
[75] G. Sundararajan, L. Rama Krishna, Mechanisms underlying the formation of
thick alumina coatings through the MAO coating technology, Surf. Coatings
Technol. 167 (2003) 269–277.
[76] H. Habazaki, S. Tsunekawa, E. Tsuji, T. Nakayama, Formation and
characterization of wear-resistant PEO coatings formed on β-titanium alloy at
different electrolyte temperatures, Appl. Surf. Sci. 259 (2012) 711–718.
[77] E.V. Parfenov, R.R. Nevyantseva, S.A. Gorbatkov, Process control for plasma
electrolytic removal of TiN coatings Part 2: Voltage control, Surf. Coatings
Technol. 199 (2005) 189–197.
[78] P. Huang, F. Wang, K. Xu, Y. Han, Mechanical properties of titania prepared by
plasma electrolytic oxidation at different voltages, Surf. Coatings Technol. 201
(2007) 5168–5171.
[79] D. Wei, Y. Zhou, D. Jia, Y. Wang, Effect of applied voltage on the structure of
microarc oxidized TiO2-based bioceramic films, Mater. Chem. Phys. 104
(2007) 177–182.
[80] H. Wu, X. Lu, B. Long, X. Wang, J. Wang, Z. Jin, The effects of cathodic and
anodic voltages on the characteristics of porous nanocrystalline titania coatings
fabricated by microarc oxidation, Mater. Lett. 59 (2005) 370–375.
[81] C.B. Wei, X.B. Tian, S.Q. Yang, X.B. Wang, R.K.Y. Fu, P.K. Chu, Anode
current effects in plasma electrolytic oxidation, Surf. Coatings Technol. (2007)
5021–5024.
[82] X.-M. Zhang, X.-B. Tian, C.-Z. Gong, S.-Q. Yang, Effects of current density on
coating kinetic and micro-structure of microarc oxidation coatings fabricated on
pure aluminum, in: 2010 3rd Int. Nanoelectron. Conf., IEEE, 2010: pp. 1482–
1483.
[83] X. Sun, Z. Jiang, Z. Yao, X. Zhang, The effects of anodic and cathodic
processes on the characteristics of ceramic coatings formed on titanium alloy
through the MAO coating technology, Appl. Surf. Sci. 252 (2005) 441–447.
[84] P. Bala Srinivasan, J. Liang, C. Blawert, W. Dietzel, P.B. Srinivasan, R.G.
Balajeee, et al., Effect of pulse frequency on the microstructure, phase
composition and corrosion performance of a phosphate-based plasma
electrolytic oxidation coated AM50 magnesium alloy, Appl. Surf. Sci. 256
(2010) 3928–3935.
[85] Z. Yao, Y. Liu, Y. Xu, Z. Jiang, F. Wang, Effects of cathode pulse at high
frequency on structure and composition of Al2TiO5 ceramic coatings on Ti
alloy by plasma electrolytic oxidation, Mater. Chem. Phys. (2011) 227–231.
[86] D.R. P. Gupta , G. Tenhundfeld, E.O. Daigle, Electrolytic plasma technology:
Science and engineering—An overview, Surf. Coat. Technol. 201 (2007) 8746–
8760.
[87] Y.M. Wang, H. Tian, X.E. Shen, L. Wen, J.H. Ouyang, Y. Zhou, et al., An
elevated temperature infrared emissivity ceramic coating formed on 2024
aluminium alloy by microarc oxidation, Ceram. Int. 39 (2013) 2869–2875.
[88] K. Wang, B. Koo, C. Lee, Y. Kim, Effects of Hybrid Voltages on Oxide
Formation on 6061 Al-Alloys During Plasma Electrolytic Oxidation, Chinese J.
Aeronaut. 22 (2009) 564–568.
[89] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, Plasma
electrolysis for surface engineering, Surf. Coatings Technol. 122 (1999) 73–93.
[90] G.C. Romig, METHODS OF COATING METAL, US Patent 2 132 438, 1938.
[91] J. Frasch, PROCESS FOR PROTECTING ARTICLES MADE OF LIGHT
METALS, US Patent 2 364 964, 1944.
[92] H.H. Kellogg, Anode Effect in Aqueous Electrolysis, J. Electrochem. Soc. 97
(1950) 133.
[93] R.. Dwyer, METHOD OF INCREASING EMISSIVITY OF TANTALUM, US
Patent 2 720 488, 1955.
[94] W. McNeill, G.F. Nordblom, METHODS OF MAKING CADMIUM
NIOBATE, US Patent 2 854 390, 1958.
[95] A. Hickling, G.R. Newns, Glow-discharge electrolysis. Part V. The contact
glow-discharge electrolysis of liquid ammonia, J. Chem. Soc. (1961) 5186–
5191.
[96] W. McNeill, L.L. Gruss, ANODIC SPARK REACTION PROCESSES AND
ARTICLES, US Patent 3 293 158, 1966.
[97] O. Kozak, ANTI-CORROSIVE COATING ON MAGNESIUM AND ITS
ALLOYS, US Patent 4 184 926, 1980.
[98] R.J. Hradcovsky, S.H. Bayles, COATED VALVE METAL ARTICLE
FORMED BY SPARK ANODIZING, US Patent 3 956 080, 1976.
[99] O. Kozak, METHOD OF COATING ARTICLES OF MAGNESIUM AND AN
ELECTOLYTIC BATH THEREFOR, US Patent 4 620 904, 1986.
[100] P. Kurze, W. Krysmann, W. Knoefler, H. Grar, CERAMIC-COATED METAL
IMPLANTS, US Patent 4 846 837, 1989.
[101] W. Lautenschlager, S. Pahlke, G. Tolg, ALUMINIUM OBJECT WITH
ANODIC OXIDE SURFACE, US Patent 3 862 892, 1975.
[102] W. Kobayashi, AQUEOUS ANODIZING SOLUTION AND PROCESS FOR
COLORING ARTICLE OF MAGNESIUM OR MAGNESIUM-BASE
ALLOY, US Patent 4 551 211, 1985.
[103] B.. Antonov, S.. Panayotov, O. V Lyutakov, APPARATUS FOR THE SPARK
DEPOSITION OF METALS, US Patent 4 226 697, 1980.
[104] J. Schmidt, T. Furche, R. Erdmann, M. Reichert, B. Ullrich, P. Kurze, et al.,
BLACK SURFACE LAYER ON LIGHT METAL, US Patent 5 075 178, 1991.
[105] T. Schwarz, U. Bayer, J. Schmidt, T. Furche, ELECTROLYTE FOR
PRODUCING CONVERSION COATINGS, US Patent 5 094 727, 1992.
[106] H. Hanagata, T. Suzuki, Y. K, H. Igarashi, METHOD FOR FORMING
CERAMIC FILMS BY ANODE-SPARK DISCHARGE, US Patent 5 147 515,
1992.
[107] D. Boyle, D. Collins, O. Popoola, P. Pergande, T. Wong, SURFACING OF
ALUMINUM BODIES BY ANODIC SPARK DEPOSITION, US Patent 6 245
436, 2001.
[108] X. Wu, W. Qin, Y. Guo, Z. Xie, Self-lubricative coating grown by micro-plasma
oxidation on aluminum alloys in the solution of aluminate–graphite, Appl. Surf.
Sci. 254 (2008) 6395–6399.
[109] P.B. Srinivasan, S. Riekehr, C. Blawert, W. Dietzel, M. Koçak, Slowstrain rate
stress corrosion cracking behaviour of as-welded and plasma electrolytic
oxidation treated AZ31HP magnesium alloy autogenous laser beamweldment,
Mater. Sci. Eng. A. (2009) 197–203.
[110] Z. Li, X. Jing, Y. Yuan, M. Zhang, Composite coatings on a Mg–Li alloy
prepared by combined plasma electrolytic oxidation and sol–gel techniques,
Corros. Sci. (2012) 358–366.
[111] S. Yagi, A. Sengoku, K. Kubota, E. Matsubara, Surface modification of
ACM522 magnesium alloy by plasma electrolytic oxidation in phosphate
electrolyte, Corros. Sci. (2012) 74–80.
[112] P.B. Srinivasan, C. Blawert, W. Dietzel, Effect of plasma electrolytic oxidation
treatment on the corrosion and stress corrosion cracking behaviour of AM50
magnesium alloy, Mater. Sci. Eng. A. (2008) 401–406.
[113] Y. Wang, Z. Jiang, X. Liu, Z. Yao, Influence of treating frequency on
microstructure and properties of Al2O3 coating on 304 stainless steel by
cathodic plasma electrolytic deposition, Appl. Surf. Sci. 255 (2009) 8836–8840.
[114] P. Liu, X. Pan, W. Yang, K. Cai, Y. Chen, Al2O3–ZrO2 ceramic coatings
fabricated on WE43 magnesium alloy by cathodic plasma electrolytic
deposition, Mater. Lett. (2012) 16–18.
[115] S.Y. Shadrin, P.N. Belkin, Analysis of models for calculation of temperature of
anode plasma electrolytic heating, Int. J. Heat Mass Transf. (2012) 179–186.
[116] K. Wang, S.S. Byeon, B.H. Koo, Y.G. Jung, Characteristic of AlON–Al2O3
coatings on Al6061 alloy by electrolytic plasma processing in aluminate and
nitride electrolytes, Surf. Coat. Technol. 204 (2010) S11–S14.
[117] A.A. Voevodin, A.. Yerokhin, V. V Lyubimov, M.S. Donley, J.S. Zabinski,
Characterization of wear protective Al-Si-0 coatings forrned on Al-based alloys
by micro-arc discharge treatment, Surf. Coat. Technol. 86-87 (1996) 516–521.
[118] R. ZHANG, D. SHAN, E. HAN, S. GUO, Development of microarc oxidation
process to AZ91 HP magnesium alloy, Trans. Nonferrous Met. Soc. China. 16
(2006) s685–s688.
[119] X. Sun, Z. Jiang, S. Xin, Z. Yao, Composition and mechanical properties of
hard ceramic coating containing a-Al2O3 produced by microarc oxidation on
Ti–6Al–4Valloy, Thin Solid Films. 471 (2005) 194–199.
[120] W. Xue, Z. Deng, R. Chen, T. Zhang, Growth regularity of ceramic coatings
formed by microarc oxidation on Al-Cu-Mg alloy, Thin Solid Films. 372 (2000)
114–117.
[121] Y. Gu, C. Chen, S. Bandopadhyay, C. Ning, Y. Zhang, Y. Guo, Corrosion
mechanism and model of pulsed DC microarc oxidation treated AZ31 alloy in
simulated body fluid, Appl. Surf. Sci. 258 (2012) 6116–6126.
[122] A. Polat, M. Makaraci, M. Usta, Influence of sodium silicate concentration on
structural and tribological properties of microarc oxidation coatings on 2017A
aluminum alloy substrate, J. Alloys Compd. 504 (2010) 519–526.
[123] Z. Wang, Z. Jiang, In situ formation of Al2O3–SiO2–SnO2 composite ceramic
coating by microarc oxidation on Al–20%Sn alloy, Appl. Surf. Sci. 256 (2010)
3443–3447.
[124] H.Y. Zheng, Y.K. Wang, B.S. Li, G.R. Han, The effects of Na2WO4
concentration on the properties of microarc oxidation coatings on aluminum
alloy, Mater. Lett. 59 (2005) 139–142.
[125] W. Xue, X. Shi, M. Hua, Y. Li, Preparation of anti-corrosion films by microarc
oxidation on an Al–Si alloy, Appl. Surf. Sci. 253 (2007) 6118–6124.
[126] M. Aliofkhazraei, C. Morillo, R. Miresmaeili, A.S. Rouhaghdam, Carburizing of
low-melting-point metals by pulsed nanocrystalline plasma electrolytic
carburizing, Surf. Coatings Technol. 202 (2008) 5493–5496.
[127] F. ÇavuÅŸlu, M. Usta, F. Çavuşlu, Kinetics and mechanical study of plasma
electrolytic carburizing for pure iron, Appl. Surf. Sci. 257 (2011) 4041–4020.
[128] P. Kurze, D. Banerjee, H. Kletke, METHODS OF PRODUCING OXIDE
CERAMIC LAYERS ON BARRIER LAYER-FORMING METALS AND
ARTICLES PRODUCED BY THE METHOD, US Patent 5 385 662, 1995.
[129] M. Khorasanian, A. Dehghan, M.H. Shariat, M.E. Bahrololoom, S. Javadpour,
Microstructure and wear resistance of oxide coatings on Ti-6Al-4V produced by
plasma electrolytic oxidation in an inexpensive electrolyte, Surf. Coat. Technol.
206 (2011) 1495–1502.
[130] Y.K. Pan, C.Z. Chen, D.G. Wang, X. Yu, Z.Q. Lin, Influence of additives on
microstructure and property of microarc oxidized Mg–Si–O coatings, Ceram.
Int. 38 (2012) 5527–5533.
[131] X.-M. Li, Y. Han, Mechanical properties of Ti(C0.7N0.3) film produced by
plasma electrolytic carbonitriding of Ti6Al4V alloy, Appl. Surf. Sci. 254 (2008)
6350–6357.
[132] X.X.L. Zhang, Z.H. Jiang, Z.Z.P. Yao, Z.D.Z. Wu, Electrochemical study of
growth behaviour of plasma electrolytic oxidation coating on Ti6Al4V: Effects
of the additive, Corros. Sci. 52 (2010) 3465–3473.
[133] L. Ceschini, E. Lanzoni, C. Martini, D. Prandstraller, G. Sambogna, Comparison
of dry sliding friction and wear of Ti6Al4V alloy treated by plasma electrolytic
oxidation and PVD coating, Wear. (2008) 86–95.
[134] H. Cimenoglu, M. Gunyuz, G.T. Kose, M. Baydogan, F. Uğurlu, C. Sener,
Micro-arc oxidation of Ti6Al4V and Ti6Al7Nb alloys for biomedical
applications, Mater. Charact. 62 (2011) 304–311.
[135] X. Zhang, Z. Yao, Z. Jiang, Y. Zhang, X. Liu, Investigation of the plasma
electrolytic oxidation of Ti6Al4V under single-pulse power supply, Corros. Sci.
53 (2011) 2253–2262.
[136] B. Yoo, K.R. Shin, D.Y. Hwang, D.H. Lee, D.H. Shin, Effect of surface
roughness on leakage current and corrosion resistance of oxide layer on AZ91
Mg alloy prepared by plasma electrolytic oxidation, Appl. Surf. Sci. 256 (2010)
6667–6672.
[137] J.H. Gao, S.K. Guan, J. Chen, L.G. Wang, S.J. Zhu, J.H. Hu, et al., Fabrication
and characterization of rod-like nano-hydroxyapatite on MAO coating supported
on Mg–Zn–Ca alloy, Appl. Surf. Sci. 257 (2011) 2231–2237.
[138] Y.G. Ko, K.M. Lee, B.U. Lee, D.H. Shin, An electrochemical analysis of AZ91
Mg alloy processed by plasma electrolytic oxidation followed by static
annealing, J. Alloys Compd. (2011) S468–S472.
[139] D.Y. HWANG, J.Y. CHO, D.H. LEE, B.Y. YOO, D.H. SHIN, Plasma
Electrolytic Oxidation of AZ91 Mg Alloy in the Sodium Stannate Electrolyte,
Mater. Trans. 49 (2008) 1600–1605.
[140] I.J. Hwang, B.U. Lee, Y.G. Ko, D.H. Shin, Corrosion response of annealed
oxide film of pure Mg via plasma electrolytic oxidation in an electrolyte
containing KMnO4, J. Alloys Compd. (2011) S473–S477.
[141] D. Sreekanth, N. Rameshbabu, Development and characterization of
MgO/hydroxyapatite composite coating on AZ31 magnesium alloy by plasma
electrolytic oxidation coupled with electrophoretic deposition, Mater. Lett.
(2012) 439–442.
[142] J.-Y. CHO, D.-Y. HWANG, D.-H. LEE, B. YOO, D.-H. SHIN, Influence of
potassium pyrophosphate in electrolyte on coated layer of AZ91 Mg alloy
formed by plasma electrolytic oxidation, Trans. Nonferrous Met. Soc. China. 19
(2009) 824–828.
[143] S. LU, Z. WANG, J. CHEN, X. ZHOU, Optimization of dual electrolyte and
characteristic of micro-arc oxidation coating fabricated on ZK60 Mg alloy,
Trans. Nonferrous Met. Soc. China. 21 (2011) 929–935.
[144] Y. Yan, Y. Han, D. Li, J. Huang, Q. Lian, Effect of NaAlO2 concentrations on
microstructure and corrosion resistance of Al2O3/ZrO2 coatings formed on
zirconium by micro-arc oxidation, Appl. Surf. Sci. 256 (2010) 6359–6366.
[145] E. Matykina, R. Arrabal, P. Skeldon, G.E. Thompson, P. Wang, P. Wood,
Plasma electrolytic oxidation of a zirconium alloy under AC conditions, Surf.
Coat. Technol. 204 (2010) 2142–2151.
[146] X.-M. Li, Y. Han, Y.-S. Li, Synthesis of nanocrystallineTi (CxN1−x) thick films
on titanium by plasma electrolytic carbonitriding, Surf. Coatings Technol. 201
(2007) 5326–5329.
[147] X.Y. Chen Fei, Zhou Hai, Chen Chen, Study on the tribological performance of
ceramic coatings on titanium alloy surfaces obtained through microarc
oxidation, Prog. Org. Coatings. 64 (2009) 264–267.
[148] S. Cheng, D. Wei, Y. Zhou, Formation and structure of sphene/titania composite
coatings on titanium formed by a hybrid technique of microarc oxidation and
heat-treatment, Appl. Surf. Sci. 257 (2011) 3404–3411.
[149] D. Wei, Y. Zhou, D. Jia, Y. Wang, Structure of calcium titanate/titania
bioceramic composite coatings on titanium alloy and apatite deposition on their
surfaces in a simulated body fluid, Surf. Coatings Technol. 201 (2007) 8715–
8722.
[150] Y. Wang, B. Jiang, T. Lei, L. Guo, Dependence of growth features of microarc
oxidation coatings of titanium alloy on control modes of alternate pulse, Mater.
Lett. 58 (2004) 1907–1911.
[151] E. Matykina, R. Arrabal, F. Monfort, P. Skeldon, G.E. Thompson, Incorporation
of zirconia into coatings formed by DCplasma electrolytic oxidation of
aluminium in nanoparticle suspensions, Appl. Surf. Sci. 255 (2008) 2830–2839.
[152] S. Moon, Y. Jeong, Generation mechanism of microdischarges during plasma
electrolytic oxidation of Al in aqueous solutions, Corros. Sci. 51 (2009) 1506–
1512.
[153] Y. Ma, X. Nie, D.O. Northwood, H. Hu, Corrosion and erosion properties of
silicate and phosphate coatings on magnesium, Thin Solid Films. 469-470
(2004) 472–477.
[154] R. Arrabal, E. Matykina, F. Viejo, P. Skeldon, G.E. Thompson, Corrosion
resistance of WE43 and AZ91D magnesium alloys with phosphate PEO
coatings, Corros. Sci. 50 (2008) 1744–1752.
[155] W. Gu, G. Lv, H. Chen, G. Chen, W. Feng, G. Zhang, et al., Investigation of
morphology and composition of plasma electrolytic oxidation coatings in
systems of Na2SiO3–NaOH and (NaPO3)6–NaOH, J. Mater. Process. Technol.
182 (2007) 28–33.
[156] R. Arrabal, E. Matykina, T. Hashimoto, P. Skeldon, G.E. Thompson,
Characterization of AC PEO coatings on magnesium alloys, Surf. Coatings
Technol. 203 (2009) 2207–2220.
[157] A.L. Yerokhin, A. Shatrov, V. Samsonov, P. Shashkov, A. Pilkington, A.
Leyland, et al., Oxide ceramic coatings on aluminium alloys produced by a
pulsed bipolar plasma electrolytic oxidation process, Surf. Coatings Technol.
199 (2005) 150–157.
[158] C.-H. Hsu, H.-P. Teng, F.-H. Lu, Effects of addition of Al(NO3)3 to electrolytes
on alumina coatings by plasma electrolytic oxidation, Surf. Coat. Technol. 205
(2011) 3677–3682.
[159] L. Rama Krishna, K.R.. Somaraju, G. Sundararajan, The tribological
performance of ultra-hard ceramic composite coatings obtained through
microarc oxidation, Surf. Coatings Technol. 163-164 (2003) 484–490.
[160] J.A. Curran, T.W. Clyne, Thermo-physical properties of plasma electrolytic
oxide coatings on aluminium, Surf. Coatings Technol. 199 (2005) 168–176.
[161] J. Liang, L. Hu, J. Hao, Preparation and characterization of oxide films
containing crystalline TiO2 on magnesium alloy by plasma electrolytic
oxidation, Electrochim. Acta. 52 (2007) 4836–4840.
[162] G. Lv, W. Gu, H. Chen, W. Feng, M.L. Khosa, L. Li, et al., Characteristic of
ceramic coatings on aluminum by plasma electrolytic oxidation in silicate and
phosphate electrolyte, Appl. Surf. Sci. 253 (2006) 2947–2952.
[163] C.S. Dunleavy, I.O. Golosnoy, J.A. Curran, T.W. Clyne, Characterisation of
discharge events during plasma electrolytic oxidation, Surf. Coatings Technol.
203 (2009) 3410–3419.
[164] R.O. Hussein, X. Nie, D.O. Northwood, Influence of process parameters on
electrolytic plasma discharging behaviour and aluminum oxide coating
microstructure, Surf. Coat. Technol. 205 (2010) 1659–1667.
[165] V. Dehnavi, B.L. Luan, D.W. Shoesmith, X.Y. Liu, S. Rohani, B. Li, et al.,
Effect of duty cycle and applied current frequency on plasma electrolytic
oxidation (PEO) coating growth behavior, Surf. Coat. Technol. 226 (2013) 100–
107.
[166] K. Wang, B.-H. KOO, C.-G. LEE, Y.-J. KIM, S.-H. LEE, E. Byon, Effects of
electrolytes variation on formation of oxide layers of 6061 Al alloys by plasma
electrolytic oxidation, Trans. Nonferrous Met. Soc. China. 19 (2009) 866–870.
[167] J. Schmidt, T. Furche, R. Erdmann, M. Reichert, U. Bayer, P. Kurze, et al.,
ELECTROLYTE FOR THE PRODUCTION OF BLACK SURFACE LAYERS
ON LIGHT METALS, US Patent 5 035 781, 1991.
[168] P. Carson, C. Mumford, Hazardous Chemicals Handbook (Second edition),
Butterworth-Heinemann, 2002.
[169] J. Li, H. Cai, B. Jiang, Growth mechanism of black ceramic layers formed by
microarc oxidation, Surf. Coatings Technol. 201 (2007) 8702–8708.
[170] I.I.J. Hwang, D.D.Y. Hwang, Y.Y.M. Kim, B. Yoo, D.H. Shin, Formation of
uniform passive oxide layers on high Si content Al alloy by plasma electrolytic
oxidation, J. Alloys Compd. 5045 (2010) 5527–5530.
[171] A.M. Morgan, O.S. El-Tawil, Effects of ammonium metavanadate on fertility
and reproductive performance of adult male and female rats., Pharmacol. Res.
47 (2003) 75–85.
[172] F.-Y. Jin, K. Wang, M. Zhu, L.-R. Shen, J. Li, H.-H. Hong, et al., Infrared
reflection by alumina films produced on aluminum alloy by plasma electrolytic
oxidation, Mater. Chem. Phys. 114 (2009) 398–401.
[173] Z.W. Wang, Y.M. Wang, Y. Liu, J.L. Xu, L.X. Guo, Y. Zhou, et al.,
Microstructure and infrared emissivity property of coating containing TiO2
formed on titanium alloy by microarc oxidation, Curr. Appl. Phys. 11 (2011)
1405–1409.
[174] D.G. Altenpohl, Aluminum: Technology, Applications and Environment: A
Profile of a Modern Metal Aluminum from Within, 6th ed., Aluminum
Association and The Minerals, Metals & Materials Society, 1998.
[175] D.R. Lide, CRC Handbook of Chemistry and Physics, 89th Edition, 89th ed.,
CRC Press, 2008.
[176] M. GmbH, Operation Manual, SPIK 200A (Superior Plasma Instant Kinetics),
SHEN CHANG ELECTRIC CO. LTD., n.d.
[177] E. P. G. T. van de Ven and H. Koelmans, The Cathodic Corrosion of
Aluminum, J. Electrochem. Soc. 123 (1976) 143–144.
[178] E.V. Koroleva, G.E. Thompson, G. Hollrigl, M. Bloeck, Surface morphological
changes of aluminium alloys in alkaline solution:, Corros. Sci. 41 (1999) 1475–
1495.
[179] C. Zhu, P. Lu, Z. Zheng, J. Ganor, Coupled alkali feldspar dissolution and
secondary mineral precipitation in batch systems: 4. Numerical modeling of
kinetic reaction paths, Geochim. Cosmochim. Acta. 74 (2010) 3963–3983.
[180] R. McPherson, Formation of metastable phases in flame- and plasma-prepared
alumina, J. Mater. Sci. 8 (1973) 851–858.
[181] P.S. Santos, H.S. Santos, S.P. Toledo, Standard transition aluminas. Electron
microscopy studies, Mater. Res. 3 (2000) 104–114.
[182] P.M. de Woolf, J.W. Visser, Absolute Intensities - Outline of a Recommended
Practice, Powder Diffr. 3 (1988) 202–204.
[183] E. Matykina, R. Arrabal, A. Mohamed, P. Skeldon, G.E. Thompson, Plasma
electrolytic oxidation of pre-anodized aluminium, Corros. Sci. 51 (2009) 2897–
2905.
[184] S. Stojadinović, J. Jovović, M. Petković, R. Vasilić, N. Konjević, Spectroscopic
and real-time imaging investigation of tantalum plasma electrolytic oxidation
(PEO), Surf. Coat. Technol. 205 (2011) 5406–5413.
[185] G.E. Walrafen, E. Pugh, Raman Combinations and Stretching Overtones from
Water, Heavy Water, and NaCl in Water at Shifts to ca. 7000 cm -1, J. Solution
Chem. 33 (2004) 81–97.
[186] S.P. Langley, XXII. The selective absorption of solar energy, Philos. Mag. Ser.
5. 15 (1883) 153–183.
[187] R.D. Aines, G.R. Rossman, The high temperature behavior of water and carbon
dioxide in cordierite and beryl, Am. Mineral. 69 (1984) 319–327.
[188] H. Rubens, E. Aschkinass, Observations on the Absorption and Emission of
Aqueous Vapor and Carbon Dioxide in the Infra-Red Spectrum, Astrophys. J. 8
(1898) 176.
[189] J. Ryczkowski, IR spectroscopy in catalysis, Catal. Today. 68 (2001) 263–381.
[190] O. Rozenbaum, D. De Sousa Meneses, P. Echegut, Texture and porosity effects
on the thermal radiative behavior of alumina ceramics, Int. J. Thermophys. 30
(2009) 580–890.
[191] A. Boumaza, L. Favaro, J. Lédion, Transition alumina phases induced by heat
treatment of boehmite: An X-ray diffraction and infrared spectroscopy study, J.
Solid State Chem. 182 (2009) 1171–1176.
[192] K. Nouneh, I.V. Kityk, R. Viennois, S. Benet, S. Charar, S. Paschen, et al.,
Influence of an electron-phonon subsystem on specific heat and two-photon
absorption of the semimagnetic semiconductors Pb1−xYbxX (X=S, Se,Te) near
the semiconductor-isolator phase transformation, Phys. Rev. B. 73 (2006)
035329.
[193] J.-Y. Liu, C.-F. Huang, P.-C. Hsueh, Acoustic plane-wave scattering from a
rough surface over a random fluid medium, Ocean Eng. 29 (2002) 915–930.
[194] T. Morioka, S. Kimura, N. Tsuda, Study of the structure of silica film by
infrared spectroscopy and electron diffraction analyses, Mon. Not. R. Astron.
Soc. 299 (1998) 78–82.
[195] C.H. Ruscher, Thermic transformation of sillimanite single crystals to 3:2
mullite plus melt: investigations by polarized IR-reflection micro spectroscopy,
J. Eur. Ceram. Soc. 21 (2001) 2463–2469.
[196] R.K. Iler, Chemistry of Silica - Solubility, Polymerization, Colloid and Surface
Properties and Biochemistry, Chapter 1, John Wiley & Sons, 1979.
[197] K.M. Lee, B.U. Lee, S. Il Yoon, E.S. Lee, B. Yoo, D.H. Shin, Evaluation of
plasma temperature during plasma oxidation processing of AZ91 Mg alloy
through analysis of the melting behavior of incorporated particles, Electrochim.
Acta. (2012) 6–11.
[198] R.O. Hussein, X. Nie, D.O. Northwood, A. Yerokhin, A. Matthews,
Spectroscopic study of electrolytic plasma and discharging behaviour during the
plasma electrolytic oxidation (PEO) process, J. Phys. D. Appl. Phys. 43 (2010)
105203.
[199] A.L. Yerokhin, L.O. Snizhko, N.L. Gurevina, A. Leyland, A. Pilkington, A.
Matthews, Discharge characterization in plasma electrolytic oxidation of
aluminium, J. Phys. D. Appl. Phys. 36 (2003) 2110.
[200] L. Wang, L. Chen, Z. Yan, W. Fu, Optical emission spectroscopy studies of
discharge mechanism and plasma characteristics during plasma electrolytic
oxidation of magnesium in different electrolytes, Surf. Coat. Technol. 205
(2010) 1651–1658.
[201] C. Wang, F. Wang, Y. Han, Structural characteristics and outward–inward
growth behavior of tantalum oxide coatings on tantalum by micro-arc oxidation,
Surf. Coat. Technol. 214 (2013) 110–116.
[202] X. Liu, L. Zhu, H. Liu, W. Li, Investigation of MAO coating growth mechanism
on Aluminum alloy by two-step oxidation method, Appl. Surf. Sci. accepted
(2013) 12–17.
[203] S. Wang, Y. Xia, L. Liu, N. Si, Preparation and performance of MAO coatings
obtained on AZ91D Mg alloy under unipolar and bipolar modes in a novel dual
electrolyte, Ceram. Int. 40 (2013) 93–99.
[204] C. Huan, L. Guo-Hua, Z. Gu-Ling, P. Hua, W. Xing-Quan, Z. You-Wei, et al.,
Effect of the Pulse Duty Cycle on Characteristics of Plasma Electrolytic
Oxidation Coatings Formed on AZ31 Magnesium Alloy.pdf, Chinese Phys.
Lett. 26 (2009) 096802.
[205] Y. Tang, X. Zhao, K. Jiang, J. Chen, Y. Zuo, The influences of duty cycle on the
bonding strength of AZ31B magnesium alloy by microarc oxidation treatment,
Surf. Coat. Technol. 205 (2010) 1789–1792.
[206] L. CHANG, F. CAO, J. CAI, W. LIU, Z. ZHANG, J. ZHANG, Influence of
electric parameters on MAO of AZ91D magnesium alloy using alternative
square-wave power source, Trans. Nonferrous Met. Soc. China. 21 (2011) 307–
316.
[207] X.-J. Li, G.-A. Cheng, W.-B. Xue, R.-T. Zheng, Y.-J. Cheng, Wear and
corrosion resistant coatings formed by microarc oxidation on TiAl alloy, Mater.
Chem. Phys. 107 (2008) 148–152.
[208] C.S. Dunleavy, J. a. Curran, T.W. Clyne, Time dependent statistics of plasma
discharge parameters during bulk AC plasma electrolytic oxidation of
aluminium, Appl. Surf. Sci. 268 (2013) 397–409.
[209] L.O. Snizhko, A.L. Yerokhin, N.L. Gurevina, V.A. Patalakha, A. Matthews,
Excessive oxygen evolution during plasma electrolytic oxidation of aluminium,
Thin Solid Films. (2007) 460–464.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔