(35.175.212.130) 您好!臺灣時間:2021/05/17 20:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:江怡萱
研究生(外文):Chiang,Yi-Hsuan
論文名稱:應用低溫微波退火形成鐿矽化物於金氧半場效電晶體之研究
論文名稱(外文):A Study of MOSFETs Using YbSi2 Formed by Low Temperature Microwave Annealing
指導教授:賴瓊惠李耀仁
指導教授(外文):Lai,Chiung-HuiLee,Yao-Jen
學位類別:博士
校院名稱:中華大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:77
中文關鍵詞:鐿矽化物
外文關鍵詞:YbSi2
相關次數:
  • 被引用被引用:1
  • 點閱點閱:326
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
鐿為鑭系元素當中最有潛力的材料,因為Yb擁有較低的功函數(Work Function),因此它在n-MOSFETs的矽表面上能形成較低的蕭特基屏障高度,大概約為0.3–0.4 eV。常用來形成金屬矽化物的金屬材料有鎢(Tungsten,W)、鉬(Molybdenum, Mo)、鈦(Titanium,Ti)、鈷(Cobalt,Co )和鎳(Nickel,Ni)。而鈦的矽化物常用於源/汲區,在大線寬時(約250nm以前) TiSi2被廣泛的應用在自我對準金屬矽化的製程上,但隨線寬縮小有片電阻上升的趨勢,導致臨界電壓(Threshold voltage, Vth)隨線寬縮小而上升,此現象稱為窄線寬效應(Narrow-line-width effect),其原因是在轉變TiSi2(C49)至TiSi2(C54)相位時的退火溫度可能會在小線寬區域造成金屬矽化物結塊導致片電阻上升。鎳在形成金屬矽化物時,也與鈦一樣對製程中含氧量非常敏感,且需要較高溫才會形成較低阻值的晶相,於是目前多採用鎳當作金屬矽化物的材料,但NiSi在溫度高於700℃時,晶相容易轉變成電阻值較高的NiSi2,對於尺寸的微縮造成阻礙。
本論文採用鐿金屬材料,透過微波退火(Microwave anneal,MWA)與快速熱退火(Rapid thermal anneal,RTA)兩種不同的退火機制來形成鐿矽化物,實驗分為物性與電性兩部份,於物性方面,透過MWA與RTA的方式製作出鐿矽化物,藉由鐿矽化物的形成來觀察,片電阻值、結晶情形、厚度、組成成分及粗糙度。觀察方式將使用Four-Point-Prober、XRD、TEM、EDS、AFM來分析驗證,透過低溫的退火製程形成穩定且無任何晶相改變的鐿矽化物薄膜。將最佳化的條件應用於後續元件製作;於電性分析方面,將鐿矽化物形成於二極體上,藉由I-V電性探討鐿矽化物應用於p、n-MOSFETs。最後探討p-MOSFETs的ID-VG電特性,觀察短通道效應及漏電流現象。實驗結果顯示,從MWA與RTA的電特性相比下,MWA能夠有效抑制短通道效應及改善漏電流的優勢。透過微波退火系統,在低溫製程條件下易形成平整且厚度較薄的鐿矽化物薄膜,並且可降低電晶體元件中的串聯電阻,此研究指出藉由鐿矽化物改善源汲極區域的電阻率,使得電晶體元件可以獲得更高的驅動電流。

Ytterbium (Yb) is the most promising material in lanthanide series for silicidation process in VLSI technology. The lower work function characteristics enables Yb lowering Schottky Barrier Height (SBH) to 0.3 - 0.4 eV on n-Si surface. Conventionally, the metals utilized in silicidation process are W, Mo, Ti, Co, and Ni. Ti were ordinarily applied in the formation of S/D silicide in TiSi2 type before 0.25-μm technology node because of lower sheet resistance. With scaling trends of critical dimension, the resistance of TiSi2 increases, which is narrow-line-width effect, due to agglomeration of silicide induced by annealing process for C49 to C54 phase transformation in TiSi2 films. Similarly, Ni is quite sensitive to oxygen content during process, and it is necessary to using higher temperature to transform the phase with lower resistivity. Nowadays, Ni is still widely adopted in silicidation process but tends to transform to NiSi2 at temperature higher than 700℃ which possesses higher resistivity and limits the scaling down of critical dimension.

In this thesis, one will study ytterbium silicide, through two different annealing methods for silicidation process, including rapid thermal annealing (RTA) and microwave annealing (MWA). The first part of this study, we would analyze the resistivity, crystallization, components and surface roughness of ytterbium silicide, and form a stable ytterbium silicide without any phase-changing in the film by the low temperature annealing process. Next, for the analysis of electrical characteristics, the I-V curves of ytterbium silicide diodes on n- and p-Si by different annealing methods are measured and compared. Finally, the transfer characteristics of p-MOSFETs are measured. Experimental results show that short channel effects and the leakage current can be improves after MWA process as compared with RTA process. In addition, it is easier to form the smooth ytterbium silicide thin films on Si substrate by low temperature MWA process with reduced device parasitic resistance. This research indicates the improvement of the source drain regions by ytterbium silicide makes MOSFETs achieve higher drive currents.

摘要 i
Abstract ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
附件目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 電晶體元件的串聯電阻RSD 2
1.3 金屬矽化物(Silicide) 3
1.4 低溫微波退火機制與特性 6
1.4.1 封閉式微波退火 9
1.5 論文動機 9
1.6 本文架構 10
第二章 理論基礎 17
2.1 MOSFET之結構 17
2.2 物理機制 18
2.2.1 短通道效應(Short Channel Effect) 18
2.2.2 熱積存效應(Thermal budget) 18
2.2.3 熱電子效應(Hot Electron Effect) 19
2.2.4 蕭特基屏障 (Schottky-barrier) 19
2.2.5 接面擊穿現象(Punch-Through Effect) 20
2.3 機台原理 20
2.3.1 金屬快速升溫退火爐(Rapid Thermal annealing,RTA) 20
2.3.2電漿輔助化學氣相沉積系統(Plasma Enhanced Chemical Vapor Deposition,PECVD) 21
2.3.3 金屬膜四點探針(Metal Four point probe) 21
2.3.4 X射線繞射分析儀(X-Ray Diffractometer,XRD) 22
2.3.5 場發射穿透式電子顯微鏡(Transmission Electron Microscope,TEM) 23
2.3.6 X射線能量散佈分析儀(Energy Dispersive X-ray Analyzer,EDS) 24
2.3.7 原子力顯微鏡(Atomic Force Microscope,AFM) 24
2.3.8 多層金屬濺鍍系統(Physical Vapor Deposition,PVD) 25
2.3.9 多晶矽乾式蝕刻機、金屬乾式蝕刻機 25
2.3.10 超高真空濺鍍系統 (Ultra-High Vacuum Sputter system) 26
2.3.11 電子束直寫系統 (Leica E-Beam) 27
第三章 金屬矽化物於薄膜及元件上之製作 31
3.1 金屬矽化物於薄膜上的製作 31
3.1.1 實驗目的 31
3.1.2試片製備 31
3.1.3 退火條件 32
3.2 金屬矽化物於二極體的製作 33
3.2.1 元件製作 33
3.2.2 退火條件 33
3.3 金屬矽化物於金氧半場效電晶體之製作 34
3.3.1元件製作 34
3.3.2 實驗之製作流程 35
3.3.3 退火條件 36
第四章 結果與討論 44
4.1 金屬矽化物於薄膜上之分析 44
4.2 金屬矽化物於二極體之分析 45
4.3 金屬矽化物於金氧半場效電晶體之分析 46
第五章 結論與未來展望 62
參考文獻 64

[1] F. C. Shone, S. E. Hansen, D. B. Kao, K. C. Saraswat, and J. D. Plummer, IEDM Tech. Dig. Washington, DC 534 (1986).
[2] H. Wakabayashi et al., IEDM Tech. Digest, pp.99-102 (1997).
[3] S.-H. Lo, D. A. Buchanan, Y. Taur, W. Wang “Quantum-Mechanical Modeling of Electron Tunneling Current from Inversion Layer of Ultra-ThiNOxide nMOSFET’s” IEEE Electron Device Lett., Vol. 18, No. 5, p.209, 1997.
[4] P. Shah, “Refractory metal gate process for VLSI applications”, IEEE Trans. Electron Devices, vol.26, p.631, 1979.
[5] K. Maex, Material Science and Engineering, R11, 1993.
[6] 莊達人, “VLSI製造技術,” 高立圖書, 1994
[7] J. P. Lu, D. Miles, J. Zhao, A. Gurba, Y. Xu, C. Lin, M. Hewson, J. Ruan, L. Tsung, R. Kuan, T. Grider, D. Mercer, and C. Montgomery, “A novel nickel SALICIDE process technology for CMOS devices with sub-40 nm physical gate length,” in IEDM Tech. Dig., 2002, pp. 371–374.
[8] 林鴻志, “奈米金氧半電晶體元件技術發展驅勢.”, 國家奈米元件實驗室.
[9] 吳文發, “金屬矽化物的研製.”,國家奈米元件實驗室.
[10] FanNMei Yang, Mao-Chieh Chen., “Formation of self-aligned cobalt silicide in normal flow nitrogen furnace”, Thin Solid Films, Volume 207, Issues 1-2, 30 January 1992, Pages 75-81
[11] S. Waidmann, V. Kahlert , C. Streck , P. Press , T. Kammler , K. Dittmar ,
Zienert , J. Rinderknecht., “Tuning nickel silicide properties using a lamp based RTA, a heat conduction based RTA or a furnace anneal’’, Microelectronic Engineering, vol. 83, pp. 2282-2286, 2006.
[12] G. Verma, C. Gelatos, S. Talwar, and J. C. Bravman., “Formation of Titanium Silicide on Narrow Gates Using Laser Thermal Processing’’, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 49, NO. 1, JANUARY 2002.
[13] T. Ohguro et al., IEEE Tran. Electron Devices, ED-41, p.2305 (1994).
[14] J. B. Lasky et al., IEEE Tran. Electron Devices, ED-38, p.262 (1991).
[15]謝其儒, “A study of Ultrathin and Homogenous Ni Silicide Formed by Low Temperature Microwave Annealing.”, 國立交通大學June, 2011.
[16] J. H. Booske, R. F. Cooper, I. Dobson, “Mechanisms for nonthermal effects on ionic mobility during microwave processing of crystalline solids,” J. Mater. Res., vol. 7, pp. 495-501, 1992.
[17] A. G. Whittaker, “Diffusion in Microwave-Heated Ceramics,” Chem.
Mater., vol. 17, no. 13, pp. 3426 -3432, 2005.
[18] K. Thompson, Yogesh B. Gianchandani, John Booske, IEEE, and Reid F. Cooper, “Direct Si-Si Bonding by Electromagnetic Induction Heating,” J. MicroElectroMechanical Systems, Vol. 11, No. 4, pp. 285-292, 2002.
[19] K. Thompson, J. H. Booske, Y. B. Gianchandani, and R. F. Cooper, “Electromagnetic Annealing for the 100 nm Technology Node,” IEEE Electron Device Lett., vol. 23, no. 3, pp. 127 – 129, 2002.
[20] K. Thompson, John H. Booske, Reid F. Cooper, and Yogesh B. Gianchandani, “Electromagnetic Fast-Firing for Ultra-Shallow Junction Formation,” IEEE Trans Semiconductor Manufacturing, Vol. 16, No. 3, pp. 460-468, 2003.
[21] Yao-Jen Lee, Shang-Shiun Chuang, Fu-Kuo Hsueh, Ho-Ming Lin, Shich-Chuang Wu, Ching-Yi Wu and Tseung-Yuen Tseng, “ Dopant Activation in Single Crystalline Germanium by Low Temperature Microwave Annealing,” IEEE Electron Device Lett., vol. 32, no. 2, pp. 194–196, Feb. 2011.
[22] Chang Seo Park; Byung Jin Cho, “Dopant-free FUSI PtxSi metal gate for high work function and reduced Fermi-level pinning”, EDL, p.796, 2005
[23] Yao-Jen Lee, Fu-Kuo Hsueh, Shih-Chiang Huang, Jeff M. Kowalski, Jeff E. Kowalski, Alex T.Y. Cheng, Ann Koo, Guang-li Luo, and Ching-Yi Wu,” A Low-Temperature Microwave Anneal Process for BoroNDoped Ultra-Thin Ge Epi-Layer on Si Substrate,” IEEE ELECTRON DEVICE LETTERS, VOL. 30, NO. 2, FEBRUARY 2009
[24] 陳政耀, “Study of Multi Gate Field-Effect Transistor with High-k Metal-Gate by Low Temperature Microwave Annealing, ”中華大學碩士論文,2012.
[25] 葉育軒, “ A Study of Schottky Barrier Amorphous Silicon ThiNFilm Transistor by Low Temperature Microwave Annealing, ” 義守大學碩士論文,2011.
[26] 施敏 原著,黃調元 譯,“半導體元件物理與製作技術 (第二版)”,交大出 版社,2010.
[27 ] Neamen,半導體物理元件.
[28] C. H. Wu, B. F. Hung, Albert Chin, Senior Member, IEEE, S. J. Wang, F. Y. Yen,Y. T. Hou, Y. Jin,H. J. Tao, S. C. Chen, and M. S. Liang, “HfAlON NMOSFETs Incorporating Low-Work Function Gate Using Ytterbium Silicide,” IEEE ELECTRON DEVICE LETTERS, VOL. 27, NO. 6, JUNE 2006.
[29] Sekwon Na,Hwayoul Choi,Byunghoon Lee,Juyun Choi,Yujin Seo,Hyoungsub Kim,Seok-Hee Lee, Hoo-Jeong Lee, “A study on the formation mechanism of ytterbium silicide for Schottky contact applications,” Surf. Interface Anal. 2012, 44, 1497–1502.
[30] A .aszcz, J Ratajczak, A Czerwinski, J Kątcki, V Srot, F Phillipp,P A van Aken, D Yarekha, N Reckinger, G Larrieu, E Dubois, “Characterization of ytterbium silicide formed in ultra high vacuum,” Journal of Physics: Conference Series 209 (2010) 012056.
[31] K.S. Chi, L.J. Chen, “Formation of ytterbium silicide on (1 1 1) and (0 0 1)Si
by solid-state reactions, ” Materials Science in Semiconductor Processing 4 (2001) 269–272.
[32] N.G. Galkin, A.M. Maslov,V.O. Polyarnyi, “Formation, optical properties and electronic structure of thin Yb silicide films on Si(111),”SPIE, Bellingham, WA, 2005.
[33] Yu-Long Jiang,Qi Xie, Christophe Detavernier, R. L. Van Meirhaeghe, Guo-Ping Ru, XiNPing Qu, Bing-Zong Li, Paul K. Chu, “Growth of pinhole-free ytterbium silicide film by solid-state reaction on Si (001) with a thin amorphous Si interlayer , ” JOURNAL OF APPLIED PHYSICS 102, 033508 .2007.
[34] Yu-Long Jiang,Bing-Zong Li, “Modulation and Extraction of Schottky Barrier Height for Advanced Source/Drain Contact , ” The Electrochemical Society, 27 (1) 759-765 (2010).
[35] Rinus T. P. Lee,Andy Eu-Jin Lim,KiaNMing Tan,Tsung-Yang Liow, Guo-Qiang Lo, Ganesh S. Samudra,Dong Zhi Chi, and Yee-Chia Yeo, “Nchannel FinFETs With 25-nm Gate Length and Schottky-Barrier Source and Drain Featuring Ytterbium Silicide, ” IEEE ELECTRON DEVICE LETTERS, VOL. 28, NO. 2, FEBRUARY 2007.
[36] Shiyang Zhu,Jingde Chen, M.-F. Li, S. J. Lee, Jagar Singh,C. X. Zhu,Anyan Du, C. H. Tung, Albert Chin, D. L. Kwong, “NType Schottky Barrier Source/Drain MOSFET Using Ytterbium Silicide, ” IEEE ELECTRON DEVICE LETTERS, VOL. 25, NO. 8, AUGUST 2004.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top