(3.236.118.225) 您好！臺灣時間：2021/05/17 08:42

### 詳目顯示:::

:

• 被引用:0
• 點閱:136
• 評分:
• 下載:4
• 書目收藏:0
 在本論文中所開發的單球機器人，是由一顆球、一個身體以及三個全向輪排成三角形所組成，所以單球機器人可以在二維平面上自由移動也可以在定點上旋轉。傳統的分層滑模控制（HSMC）和聯級滑模控制（CSMC）是用來控制欠驅動非線性系統，我們修改了基本的切換方法，用一個簡單的正數而不需要做切換，但它們的原始結構將會被保留。基本的子系統是由原始的變數以及其推導的正數所組成，然而下一個與其它的正數也能夠根據聯級或是分層結構來建立。尤其重要的是，每個子系統通常被分配有一個子系統控制輸入，其目的是獲得穩定的子系統，除了含有其他子系統的控制輸入殘留項，換句話說，它是一個非線性回授用來消除所有相關的非線性函數。本論文只能保證一個穩定的最終分層子系統或聯級子系統，但原始變數的穩定性不能得到保證。本論文所提控制方法中，首先介紹一個聯級控制與兩個分層控制以及一個向量分層控制，然後呈現有考慮座標轉換的分層控制（CHC）以及兩個向量型（VCHCs）。對於姿態和點到點的控制問題，將從模擬中驗證其可行性，並且比較它們之間的性能差異。
 A ballbot is consisted of a ball, a body, and three Omni wheels which have been arranged triangle form, so the ballbot can move freely in two-dimension plane with a spinning ability at fixed point. Conventional hierarchical sliding mode control (HSMC) and cascaded sliding mode control (CSMC) are utilized to control under-actuated nonlinear systems. We modify their essential switching scheme as a simple positive constant without any switching, but we kept their structure. The fundamental subsystem is the combination of the original variable and its derivative with a positive constant. Then the next one with the other positive constant can also be created according to the cascaded structure or hierarchical structure.Each subsystem normally is assigned with a subsystem control input which is designed to achieve a stable subsystem except a remainder containing the other subsystem control inputs. In other words, it is a nonlinear feedback to cancel all the associated nonlinear functions. We can only guarantee a stable final hierarchical or cascaded subsystem, but the stability of the original variables cannot be ensured. We start with a cascaded control (CC), two hierarchical controls (HC), and one vector hierarchical control (VHC). Then by considering the coordinate transformation, two coordinate transformation hierarchical controls (CHC) and their vector type VCHCs algorithms have also presented in the thesis. For regulation and point-to-point problems, simulations have been conducted to verify their feasibility and to compare their performance.
 摘 要 iiABSTRACT iii誌謝 iv目錄 v圖目錄 vi表目錄 ix第一章 緒論 11.1 研究動機 11.2 文獻回顧 11.3 論文架構 2第二章 單球機器人數學模型 32.1 數學模型敘述 32.2 動力學方程式推導 6第三章 控制方法 93.1 聯級控制(CC)與分層控制(HC) 93.2 座標分層控制 (CHC) 17第四章 模擬與討論 214.1 姿態控制 214.2 點對點控制 22第五章 結論與未來展望 86附錄 87參考文獻 91
 [1] T. B. Lauwers, G. A. Kantor, and R. L. Hollis, “A dynamically stable single-wheeled mobile robot with inverse mouse-ball drive”, Proc. IEEE Int’l. Conf. on Robotics and Automation, Orlando, FL, May 15-19, 2006.[2] A. K. Mampetta, “Automatic transition of ballbot from statically stable state to dynamically stable state”, Master’s thesis, Carnegie Mellon University, Pittsburgh, PA, Report CMU-R1-TR-01-00,2006.[3] U. Nagarajian, G. A. Kantor, and R. Hollis, “Trajectory planning and control of an under-actuated dynamically stable single spherical wheel robot”, Proceedings IEEE international conference on Robotics and Automation, May 12-17, 2009.[4] U. Nagarajian, A. Mampetta, G. A. Kntor, and Ralph Hollis, “State transition, balancing, station keeping , and yaw control for a dynamically stable single spherical wheel mobile robot”, Proceedings IEEE international conference on Robotics and Automation, Kobe international conference center, Kobe, Japan, May 12-17, 2009.[5] Lauwers. T. B., Kantor. G. A., and Hollis R. L., “The ballbot: An omnidirectionalbalancing mobile robot”, The International Journal of Robotics Research, pp. 0(0) 1–14., 2013.[6] Wu. C. W., Hwang C. K., “A Novel Ball Driven by Omni Wheels”, ICMLC Int. Conf. on Machine Learning and Cybernetics, pp. 3800-3803., 2008.[7] M Kumagai., Ochiai T., “Development of a Robot Balancing on a Ball”, Int. Conf. on Control, Automation and Systems, pp.433-438., 2008.[8] M Kumagai.,R.Hollis, “Development of a three-dimensional ball rotation sensing system using optical mouse sensors,” in Robotics and Automation, IEEE International Conference on, pp. 5038 –5043. , May 2011.[9] P. Fankhauser and C. Gwerder, “Modeling and Control of a Ballbot,” Bachelor thesis, ETH Zurich, June 2010.[10] Fantoni I., Lozano R., Spong M. W., “Energy Based Control of the Pendubot”, IEEE Trans. on Automatic Control, Vol. 45, No. 4, pp. 725-729., 2000.[11] Shyu. K. K., Jen. C. L., Shang. L. J., “Sliding Mode Control for an Under-actuated Overhead Crane System”, IECON 32nd Annual Conf. on IEEE Industrial Electronics, pp. 412-417., 2006.[12] Wang. W., Yi. J., Zhao. D., Liu. D., “Design of a Stable Sliding Mode Controller for a Class of Second-order Under-actuated Systems”, IEEE Proc. Control Theory, Vol.151, No.6, pp. 683-690., 2004.[13] J. Yi. and W. Wang, “Cascade sliding-mode controller for large-scale under-actuated systems”, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.301-306. ,2005[14] C. W. Chiu, C. H. Wang, C. K. Hwang “Hierarchical Sliding Mode Control of a Spherical Robots Driven by Omni Wheels“ ,Proceedings of the IEEE International Conference on Machine Learning and Cybernetics, Xian, 15-17 July, 2012, pp. 1613-1616.[15] K.S. Huang, Y. H. Lin, K. B. Lin, B. K. Lee, C. K. Hwang “Cascade Sliding Mode Control of a Spherical Robots Driven by Omni Wheels“ , Proceedings of the IEEE International Conference on Machine Learning and Cybernetics, Xian, 15-17 July, 2012, pp. 1607-161
 電子全文
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 球型機器人的建模與向量分層控制

 無相關期刊

 1 球型機器人的建模與向量分層控制 2 球型機器人控制 3 具無線遙控之球型機器人 設計與研製 4 具環境探勘功能之遙控球型機器人 5 球型機器人之控制研究 6 利用變頻節能控制之空調冰水系統 7 利用熱負荷節能加濕控制 8 應用改良型分層滑模控制於球型機器人 9 具全向輪驅動單球輪機械人之分層滑模控制 10 具全向輪驅動單球輪機械人之控制 11 穿戴式下肢型外骨骼機器人之開發與步態實測 12 小型人形機器人之即時行走的SOPC設計與實現 13 無線式機器人行走路徑彈性規劃設計 14 氣壓三軸平行機構機械手臂設計與模糊PID控制實現 15 基於AVR微控制器仿多足生物機器人運動行為之研究

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室